BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18045268)

  • 1. Identification of contaminant sources in enclosed spaces by a single sensor.
    Zhang T; Chen Q
    Indoor Air; 2007 Dec; 17(6):439-49. PubMed ID: 18045268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of contaminant sources in enclosed environments by inverse CFD modeling.
    Zhang TF; Chen Q
    Indoor Air; 2007 Jun; 17(3):167-77. PubMed ID: 17542830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Location identification for indoor instantaneous point contaminant source by probability-based inverse Computational Fluid Dynamics modeling.
    Liu X; Zhai Z
    Indoor Air; 2008 Feb; 18(1):2-11. PubMed ID: 18211477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of cabin conditions on placement and response of contaminant detection sensors in a commercial aircraft.
    Mazumdar S; Chen Q
    J Environ Monit; 2008 Jan; 10(1):71-81. PubMed ID: 18175019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A one-dimensional analytical model for airborne contaminant transport in airliner cabins.
    Mazumdar S; Chen Q
    Indoor Air; 2009 Feb; 19(1):3-13. PubMed ID: 19191923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals.
    Liu X; Zhai Z
    Indoor Air; 2007 Dec; 17(6):419-38. PubMed ID: 18045267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse identification of the release location, temporal rates, and sensor alarming time of an airborne pollutant source.
    Zhang T; Zhou H; Wang S
    Indoor Air; 2015 Aug; 25(4):415-27. PubMed ID: 25155718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deriving realistic source boundary conditions for a CFD simulation of concentrations in workroom air.
    Feigley CE; Do TH; Khan J; Lee E; Schnaufer ND; Salzberg DC
    Ann Occup Hyg; 2011 May; 55(4):410-20. PubMed ID: 21422277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of required monitoring time for obtaining validation data in enclosed spaces.
    Lee EG; Feigley CE; Hussey JR; Slaven JE
    J Environ Monit; 2008 Nov; 10(11):1350-6. PubMed ID: 18974904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollutant dispersion in a large indoor space: Part 1 -- Scaled experiments using a water-filled model with occupants and furniture.
    Thatcher TL; Wilson DJ; Wood EE; Craig MJ; Sextro RG
    Indoor Air; 2004 Aug; 14(4):258-71. PubMed ID: 15217479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time identification of indoor pollutant source positions based on neural network locator of contaminant sources and optimized sensor networks.
    Vukovic V; Tabares-Velasco PC; Srebric J
    J Air Waste Manag Assoc; 2010 Sep; 60(9):1034-48. PubMed ID: 20863049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and Markov chain method.
    Chen C; Lin CH; Long Z; Chen Q
    Indoor Air; 2014 Feb; 24(1):81-92. PubMed ID: 23789964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of contaminants released from room surfaces by displacement and mixing ventilation: modeling and validation.
    He G; Yang X; Srebric J
    Indoor Air; 2005 Oct; 15(5):367-80. PubMed ID: 16108910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental studies of thermal environment and contaminant transport in a commercial aircraft cabin with gaspers on.
    Li B; Duan R; Li J; Huang Y; Yin H; Lin CH; Wei D; Shen X; Liu J; Chen Q
    Indoor Air; 2016 Oct; 26(5):806-19. PubMed ID: 26547623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of mathematical models for exposure assessment with computational fluid dynamic simulation.
    Bennett JS; Feigley CE; Khan J; Hosni MH
    Appl Occup Environ Hyg; 2000 Jan; 15(1):131-44. PubMed ID: 10712068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollutant dispersion in a large indoor space. Part 2: Computational fluid dynamics predictions and comparison with a scale model experiment for isothermal flow.
    Finlayson EU; Gadgil AJ; Thatcher TL; Sextro RG
    Indoor Air; 2004 Aug; 14(4):272-83. PubMed ID: 15217480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses.
    Weisel CP; Zhang J; Turpin BJ; Morandi MT; Colome S; Stock TH; Spektor DM; Korn L; Winer AM; Kwon J; Meng QY; Zhang L; Harrington R; Liu W; Reff A; Lee JH; Alimokhtari S; Mohan K; Shendell D; Jones J; Farrar L; Maberti S; Fan T
    Res Rep Health Eff Inst; 2005 Nov; (130 Pt 1):1-107; discussion 109-27. PubMed ID: 16454009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical study of worker exposure to a gaseous contaminant: variations on body shape and scalar transport model.
    Li J; Yavuz I; Celik IB; Guffey SE
    J Occup Environ Hyg; 2005 Jun; 2(6):323-34. PubMed ID: 16020093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhalation of expiratory droplets in aircraft cabins.
    Gupta JK; Lin CH; Chen Q
    Indoor Air; 2011 Aug; 21(4):341-50. PubMed ID: 21272076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.