These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18046006)

  • 1. Relative location of inhibitory synapses and persistent inward currents determines the magnitude and mode of synaptic amplification in motoneurons.
    Bui TV; Grande G; Rose PK
    J Neurophysiol; 2008 Feb; 99(2):583-94. PubMed ID: 18046006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple modes of amplification of synaptic inhibition to motoneurons by persistent inward currents.
    Bui TV; Grande G; Rose PK
    J Neurophysiol; 2008 Feb; 99(2):571-82. PubMed ID: 18046007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational estimation of the distribution of L-type Ca(2+) channels in motoneurons based on variable threshold of activation of persistent inward currents.
    Bui TV; Ter-Mikaelian M; Bedrossian D; Rose PK
    J Neurophysiol; 2006 Jan; 95(1):225-41. PubMed ID: 16267115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study.
    Grande G; Bui TV; Rose PK
    J Neurophysiol; 2007 Jun; 97(6):4023-35. PubMed ID: 17428909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of localized innervation of the dendritic trees of feline motoneurons on the amplification of synaptic input: a computational study.
    Grande G; Bui TV; Rose PK
    J Physiol; 2007 Sep; 583(Pt 2):611-30. PubMed ID: 17615105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution.
    Elbasiouny SM; Bennett DJ; Mushahwar VK
    J Neurophysiol; 2005 Dec; 94(6):3961-74. PubMed ID: 16120667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic Connectivity between Renshaw Cells and Motoneurons in the Recurrent Inhibitory Circuit of the Spinal Cord.
    Moore NJ; Bhumbra GS; Foster JD; Beato M
    J Neurosci; 2015 Oct; 35(40):13673-86. PubMed ID: 26446220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of Ca2+ persistent inward currents in spinal motoneurones: mode of activation and integration of synaptic inputs.
    Elbasiouny SM; Bennett DJ; Mushahwar VK
    J Physiol; 2006 Jan; 570(Pt 2):355-74. PubMed ID: 16308349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical computer model analysis of the reciprocal and recurrent inhibitory postsynaptic potentials in alpha-motoneurons.
    Gradwohl G; Grossman Y
    Neural Comput; 2010 Jul; 22(7):1764-85. PubMed ID: 20235819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the inhibition of Renshaw cells during subthreshold and suprathreshold conditions using anatomically and physiologically realistic models.
    Bui TV; Dewey DE; Fyffe RE; Rose PK
    J Neurophysiol; 2005 Sep; 94(3):1688-98. PubMed ID: 15917321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent sodium and calcium currents in rat hypoglossal motoneurons.
    Powers RK; Binder MD
    J Neurophysiol; 2003 Jan; 89(1):615-24. PubMed ID: 12522206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat.
    Fyffe RE
    J Neurophysiol; 1991 May; 65(5):1134-49. PubMed ID: 1869909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nonlinear summation of synaptic currents on the input-output properties of spinal motoneurons.
    Cushing S; Bui T; Rose PK
    J Neurophysiol; 2005 Nov; 94(5):3465-78. PubMed ID: 16079193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the morphological and electrotonic properties of Renshaw cells, Ia inhibitory interneurons, and motoneurons in the cat.
    Bui TV; Cushing S; Dewey D; Fyffe RE; Rose PK
    J Neurophysiol; 2003 Nov; 90(5):2900-18. PubMed ID: 12878716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location and magnitude of conductance changes produced by Renshaw recurrent inhibition in spinal motoneurons.
    Maltenfort MG; McCurdy ML; Phillips CA; Turkin VV; Hamm TM
    J Neurophysiol; 2004 Sep; 92(3):1417-32. PubMed ID: 15102901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitation of somatic calcium channels can evoke prolonged tail currents in rat hypoglossal motoneurons.
    Moritz AT; Newkirk G; Powers RK; Binder MD
    J Neurophysiol; 2007 Aug; 98(2):1042-7. PubMed ID: 17522175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular distribution of L-type Ca2+ channels responsible for plateau potentials in motoneurons from the lumbar spinal cord of the turtle.
    Simon M; Perrier JF; Hounsgaard J
    Eur J Neurosci; 2003 Jul; 18(2):258-66. PubMed ID: 12887407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of effective synaptic currents underlying recurrent inhibition in cat triceps surae motoneurons.
    Lindsay AD; Binder MD
    J Neurophysiol; 1991 Feb; 65(2):168-77. PubMed ID: 2016635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study.
    Paré D; Lang EJ; Destexhe A
    Neuroscience; 1998 May; 84(2):377-402. PubMed ID: 9539211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of group Ia EPSPs using morphologically realistic models of cat alpha-motoneurons.
    Segev I; Fleshman JW; Burke RE
    J Neurophysiol; 1990 Aug; 64(2):648-60. PubMed ID: 2213137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.