BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18046606)

  • 1. Developmental changes of mechanics measured in the gerbil cochlea.
    Emadi G; Richter CP
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):22-32. PubMed ID: 18046606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the gerbil inner ear observed in the hemicochlea.
    Richter CP; Edge R; He DZ; Dallos P
    J Assoc Res Otolaryngol; 2000 Nov; 1(3):195-210. PubMed ID: 11545226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo impedance of the gerbil cochlear partition at auditory frequencies.
    Dong W; Olson ES
    Biophys J; 2009 Sep; 97(5):1233-43. PubMed ID: 19720011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea.
    Chan WX; Yoon YJ
    Hear Res; 2015 Sep; 327():136-42. PubMed ID: 26070425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the cochlear partition's stiffness to its cellular architecture.
    Olson ES; Mountain DC
    J Acoust Soc Am; 1994 Jan; 95(1):395-400. PubMed ID: 8120250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the mystery of hearing in gerbil and other rodents with an arch-beam model of the basilar membrane.
    Kapuria S; Steele CR; Puria S
    Sci Rep; 2017 Mar; 7(1):228. PubMed ID: 28331175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical model of an arched basilar membrane in the gerbil cochlea.
    Chan WX; Lee SH; Kim N; Shin CS; Yoon YJ
    Hear Res; 2017 Mar; 345():1-9. PubMed ID: 27986594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo measurement of basilar membrane stiffness.
    Olson ES; Mountain DC
    J Acoust Soc Am; 1991 Mar; 89(3):1262-75. PubMed ID: 2030214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basilar membrane tension calculations for the gerbil cochlea.
    Naidu RC; Mountain DC
    J Acoust Soc Am; 2007 Feb; 121(2):994-1002. PubMed ID: 17348522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical tuning characteristics of the hearing organ measured at the sensory cells in the gerbil temporal bone preparation.
    Ulfendahl M; Khanna SM
    Pflugers Arch; 1993 Jul; 424(2):95-104. PubMed ID: 8414906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of cochlear mechanics.
    Zwislocki JJ
    Hear Res; 1986; 22():155-69. PubMed ID: 3733537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The postnatal development of F-actin in tension fibroblasts of the spiral ligament of the gerbil cochlea.
    Kuhn B; Vater M
    Hear Res; 1997 Jun; 108(1-2):180-90. PubMed ID: 9213130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral wall protein content mediates alterations in cochlear outer hair cell mechanics before and after hearing onset.
    Jensen-Smith H; Hallworth R
    Cell Motil Cytoskeleton; 2007 Sep; 64(9):705-17. PubMed ID: 17615570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
    Ren T
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17101-6. PubMed ID: 12461165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry.
    Dong W; Xia A; Raphael PD; Puria S; Applegate B; Oghalai JS
    J Neurophysiol; 2018 Dec; 120(6):2847-2857. PubMed ID: 30281386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea.
    Schweitzer L; Lutz C; Hobbs M; Weaver SP
    Hear Res; 1996 Aug; 97(1-2):84-94. PubMed ID: 8844189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal structural development of mammalian Basilar Membrane provides anatomical basis for the maturation of tonotopic maps and frequency tuning.
    Tani T; Koike-Tani M; Tran MT; Shribak M; Levic S
    Sci Rep; 2021 Apr; 11(1):7581. PubMed ID: 33828185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of organ of Corti mass in passive cochlear tuning.
    de La Rochefoucauld O; Olson ES
    Biophys J; 2007 Nov; 93(10):3434-50. PubMed ID: 17905841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals.
    West CD
    J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.