These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18046648)

  • 1. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model.
    Kim H; Lu J; Sacks MS; Chandran KB
    Ann Biomed Eng; 2008 Feb; 36(2):262-75. PubMed ID: 18046648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimentally derived stress resultant shell model for heart valve dynamic simulations.
    Kim H; Chandran KB; Sacks MS; Lu J
    Ann Biomed Eng; 2007 Jan; 35(1):30-44. PubMed ID: 17089074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
    Ge L; Dasi LP; Sotiropoulos F; Yoganathan AP
    Ann Biomed Eng; 2008 Feb; 36(2):276-97. PubMed ID: 18049902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated bioprosthetic heart valve deformation under quasi-static loading.
    Sun W; Abad A; Sacks MS
    J Biomech Eng; 2005 Nov; 127(6):905-14. PubMed ID: 16438226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A contact model based on the coefficient of restitution for simulations of bio-prosthetic heart valves.
    Asadi H; Borazjani I
    Int J Numer Method Biomed Eng; 2023 Sep; 39(9):e3754. PubMed ID: 37452648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of bioprosthetic heart valves.
    Arcidiacono G; Corvi A; Severi T
    J Biomech; 2005 Jul; 38(7):1483-90. PubMed ID: 15922759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.
    Murdock K; Martin C; Sun W
    J Mech Behav Biomed Mater; 2018 Jan; 77():148-156. PubMed ID: 28915471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic impact stress analysis of a bileaflet mechanical heart valve.
    Yuan Q; Xu L; Ngoi BK; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2003 Jan; 12(1):102-9. PubMed ID: 12578344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The important roles of tissue anisotropy and tissue-to-tissue contact on the dynamical behavior of a symmetric tri-leaflet valve during multiple cardiac pressure cycles.
    Saleeb AF; Kumar A; Thomas VS
    Med Eng Phys; 2013 Jan; 35(1):23-35. PubMed ID: 22483757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asynchronous closure and leaflet impact velocity of bileaflet mechanical heart valves.
    Wu ZJ; Hwang NH
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S38-49. PubMed ID: 8581210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation.
    Chandran KB; Aluri S
    Ann Biomed Eng; 1997; 25(6):926-38. PubMed ID: 9395039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimal mounting frame to reduce flexural stresses of bioprosthetic heart valves.
    Vesely I; Krucinski S; Dokainish MA; Campbell G
    ASAIO J; 1994; 40(2):199-205. PubMed ID: 8003759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.
    Abbasi M; Barakat MS; Vahidkhah K; Azadani AN
    J Mech Behav Biomed Mater; 2016 Sep; 62():33-44. PubMed ID: 27173827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation technique for bileaflet mechanical valves.
    Shipkowitz T; Ambrus J; Kurk J; Wickramasinghe K
    J Heart Valve Dis; 2002 Mar; 11(2):275-82. PubMed ID: 12000172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent.
    Dumont K; Stijnen JM; Vierendeels J; van de Vosse FN; Verdonck PR
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):139-46. PubMed ID: 15512757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational evaluation of platelet activation induced by a bioprosthetic heart valve.
    Sirois E; Sun W
    Artif Organs; 2011 Feb; 35(2):157-65. PubMed ID: 21083829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental mechanics of aortic heart valve closure.
    Hose DR; Narracott AJ; Penrose JM; Baguley D; Jones IP; Lawford PV
    J Biomech; 2006; 39(5):958-67. PubMed ID: 16488234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent analysis of leaflets in mechanical aortic bileaflet heart valves in closing phase using the finite strip method.
    Mohammadi H; Ahmadian MT; Wan WK
    Med Eng Phys; 2006 Mar; 28(2):122-33. PubMed ID: 15946890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.