These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18047111)

  • 1. Effect of copper doping on the crystal structure and morphology of 1D nanostructured manganese oxides.
    Lee SH; Park DH; Hwang SJ; Choy JH
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4029-32. PubMed ID: 18047111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct soft-chemical synthesis of chalcogen-doped manganese oxide 1D nanostructures: influence of chalcogen doping on electrode performance.
    Kim TW; Park DH; Lim ST; Hwang SJ; Min BK; Choy JH
    Small; 2008 Apr; 4(4):507-14. PubMed ID: 18383575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft-chemical synthesis and electrochemical characterization of multicomponent Mn(1-x-y)Co(x)Ni(y)O2 nanostructures.
    Kim TW; Lee SH; Hwang SJ; Hyun SH; Choy JH
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3857-61. PubMed ID: 18047074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis and characterization of potassium-doped MnO2 nanowires.
    Mukherji A; Wang L; Zou J; Auchterlonie GJ; Lu GQ
    J Nanosci Nanotechnol; 2008 Apr; 8(4):2011-5. PubMed ID: 18572607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The controllable syntheses and electrochemical study of 1-dimensional nanowires, 2-dimensional nanoplatelets, and 3-dimensional nanotowers of MnO2.
    Yan DW; Wang CR
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2487-93. PubMed ID: 17663269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A room temperature synthetic route to Mn3O4 nanoplates.
    Song R; Yuan H; Chen Y; Feng S
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2533-6. PubMed ID: 21449419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of synthesis temperature on the crystal structure and electrode property of sulfur-doped manganese oxide nanowires.
    Park DH; Kim TW; Oh EJ; Hwang SJ
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5489-93. PubMed ID: 19198483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties.
    Yan D; Cheng S; Zhuo RF; Chen JT; Feng JJ; Feng HT; Li HJ; Wu ZG; Wang J; Yan PX
    Nanotechnology; 2009 Mar; 20(10):105706. PubMed ID: 19417534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-MnO2 3D nanostructures: mineralizer-assisted synthesis, characterization, and growth mechanism.
    Zhou F; Zhao X; Yuan C; Xu H
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3332-5. PubMed ID: 18019170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H2 uptake and synthesis of the Li-dispersed manganese oxide nanotubes.
    Lee JB; Lee SC; Kim HJ
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4033-6. PubMed ID: 18047112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and morphological evolution of beta-MnO2 nanorods during hydrothermal synthesis.
    Gao T; Fjellvåg H; Norby P
    Nanotechnology; 2009 Feb; 20(5):055610. PubMed ID: 19417357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of WO3 nanomaterials.
    Pandey NK; Tiwari K; Roy A
    J Biomed Nanotechnol; 2011 Feb; 7(1):156-7. PubMed ID: 21485849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, self-assembly, and properties of Mn doped ZnO nanoparticles.
    Barick KC; Bahadur D
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1935-40. PubMed ID: 17654968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal synthesis of vanadium oxide nanotubes from oxide precursors.
    Sharma S; Thomas J; Ramanan A; Panthöfer M; Jansen M
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1985-9. PubMed ID: 17654977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium--air batteries.
    Truong TT; Liu Y; Ren Y; Trahey L; Sun Y
    ACS Nano; 2012 Sep; 6(9):8067-77. PubMed ID: 22866870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Cu-W nanocomposite by high-energy ball milling.
    Venugopal T; Rao KP; Murty BS
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2376-81. PubMed ID: 17663255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of copper incorporation into zinc oxide nanowires.
    Eustis S; Meier DC; Beversluis MR; Nikoobakht B
    ACS Nano; 2008 Feb; 2(2):368-76. PubMed ID: 19206639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heteroepitaxial growth of nanoscale oxide shell/fiber superstructures by mild hydrothermal processes.
    Chen CH; Jin L; Espinal AE; Firliet BT; Xu L; Aindow M; Joesten R; Suib SL
    Small; 2010 May; 6(9):988-92. PubMed ID: 20440703
    [No Abstract]   [Full Text] [Related]  

  • 19. Nanorods to hexagonal nanosheets of CuO-doped manganese oxide nanostructures for higher electrochemical supercapacitor performance.
    Yadav HM; Ghodake GS; Kim DY; Ramesh S; Maile NC; Lee DS; Shinde SK
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110500. PubMed ID: 31541889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface patterning: Self-assembly works for superlattices.
    Ortega JE; de Abajo FJ
    Nat Nanotechnol; 2007 Oct; 2(10):601-2. PubMed ID: 18654383
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.