BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 18047399)

  • 1. The effect of the copper chelator tetraethylenepentamine on reactive oxygen species generation by human hematopoietic progenitor cells.
    Prus E; Fibach E
    Stem Cells Dev; 2007 Dec; 16(6):1053-6. PubMed ID: 18047399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice.
    Peled T; Landau E; Mandel J; Glukhman E; Goudsmid NR; Nagler A; Fibach E
    Exp Hematol; 2004 Jun; 32(6):547-55. PubMed ID: 15183895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of tetraethylenepentamine, a synthetic copper chelating polyamine, on expression of CD34 and CD38 antigens on normal and leukemic hematopoietic cells.
    Prus E; Peled T; Fibach E
    Leuk Lymphoma; 2004 Mar; 45(3):583-9. PubMed ID: 15160922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine.
    Peled T; Mandel J; Goudsmid RN; Landor C; Hasson N; Harati D; Austin M; Hasson A; Fibach E; Shpall EJ; Nagler A
    Cytotherapy; 2004; 6(4):344-55. PubMed ID: 16146887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chelatable cellular copper modulates differentiation and self-renewal of cord blood-derived hematopoietic progenitor cells.
    Peled T; Glukhman E; Hasson N; Adi S; Assor H; Yudin D; Landor C; Mandel J; Landau E; Prus E; Nagler A; Fibach E
    Exp Hematol; 2005 Oct; 33(10):1092-100. PubMed ID: 16219531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells.
    Peled T; Landau E; Prus E; Treves AJ; Nagler A; Fibach E
    Br J Haematol; 2002 Mar; 116(3):655-61. PubMed ID: 11849228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper modulates the differentiation of mouse hematopoietic progenitor cells in culture.
    Huang X; Pierce LJ; Cobine PA; Winge DR; Spangrude GJ
    Cell Transplant; 2009; 18(8):887-97. PubMed ID: 19520051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial.
    de Lima M; McMannis J; Gee A; Komanduri K; Couriel D; Andersson BS; Hosing C; Khouri I; Jones R; Champlin R; Karandish S; Sadeghi T; Peled T; Grynspan F; Daniely Y; Nagler A; Shpall EJ
    Bone Marrow Transplant; 2008 May; 41(9):771-8. PubMed ID: 18209724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of HPCs from cord blood in a novel 3D matrix.
    Ehring B; Biber K; Upton TM; Plosky D; Pykett M; Rosenzweig M
    Cytotherapy; 2003; 5(6):490-9. PubMed ID: 14660045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidate hematopoietic stem cells from fetal tissues, umbilical cord blood vs. adult bone marrow and mobilized peripheral blood.
    Huang S; Law P; Young D; Ho AD
    Exp Hematol; 1998 Nov; 26(12):1162-71. PubMed ID: 9808056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential expression of the vasoactive intestinal peptide (VIP) receptor VPAC1 in human cord blood-derived CD34+CD38- cells: possible role of VIP as a growth-promoting factor for hematopoietic stem/progenitor cells.
    Kawakami M; Kimura T; Kishimoto Y; Tatekawa T; Baba Y; Nishizaki T; Matsuzaki N; Taniguchi Y; Yoshihara S; Ikegame K; Shirakata T; Nishida S; Masuda T; Hosen N; Tsuboi A; Oji Y; Oka Y; Ogawa H; Sonoda Y; Sugiyama H; Kawase I; Soma T
    Leukemia; 2004 May; 18(5):912-21. PubMed ID: 14999295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual SP/ALDH functionalities refine the human hematopoietic Lin-CD34+CD38- stem/progenitor cell compartment.
    Pierre-Louis O; Clay D; Brunet de la Grange P; Blazsek I; Desterke C; Guerton B; Blondeau C; Malfuson JV; Prat M; Bennaceur-Griscelli A; Lataillade JJ; Le Bousse-Kerdilès MC
    Stem Cells; 2009 Oct; 27(10):2552-62. PubMed ID: 19650038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Karyotyping, immunophenotyping, and apoptosis analyses on human hematopoietic precursor cells derived from umbilical cord blood following long-term ex vivo expansion.
    Tian H; Huang S; Gong F; Tian L; Chen Z
    Cancer Genet Cytogenet; 2005 Feb; 157(1):33-6. PubMed ID: 15676144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells.
    Georgantas RW; Tanadve V; Malehorn M; Heimfeld S; Chen C; Carr L; Martinez-Murillo F; Riggins G; Kowalski J; Civin CI
    Cancer Res; 2004 Jul; 64(13):4434-41. PubMed ID: 15231652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human CD34(+) and CD34(+)CD38(-) hematopoietic progenitors in sickle cell disease differ phenotypically and functionally from normal and suggest distinct subpopulations that generate F cells.
    Luck L; Zeng L; Hiti AL; Weinberg KI; Malik P
    Exp Hematol; 2004 May; 32(5):483-93. PubMed ID: 15145217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G-CSF- and GM-CSF-induced upregulation of CD26 peptidase downregulates the functional chemotactic response of CD34+CD38- human cord blood hematopoietic cells.
    Christopherson KW; Uralil SE; Porecha NK; Zabriskie RC; Kidd SM; Ramin SM
    Exp Hematol; 2006 Aug; 34(8):1060-8. PubMed ID: 16863912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells.
    Jang YK; Jung DH; Jung MH; Kim DH; Yoo KH; Sung KW; Koo HH; Oh W; Yang YS; Yang SE
    Ann Hematol; 2006 Apr; 85(4):212-25. PubMed ID: 16391912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel protocol that allows short-term stem cell expansion of both committed and pluripotent hematopoietic progenitor cells suitable for clinical use.
    Astori G; Malangone W; Adami V; Risso A; Dorotea L; Falasca E; Marini L; Spizzo R; Bigi L; Sala P; Tonutti E; Biffoni F; Rinaldi C; Del Frate G; Pittino M; Degrassi A
    Blood Cells Mol Dis; 2001; 27(4):715-24; discussion 725-7. PubMed ID: 11778655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pluripotent and myeloid-committed CD34+ subsets in hematopoietic stem cell allografts.
    Theilgaard-Mönch K; Raaschou-Jensen K; Schjødt K; Heilmann C; Vindeløv L; Jacobsen N; Dickmeiss E
    Bone Marrow Transplant; 2003 Dec; 32(12):1125-33. PubMed ID: 14647266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of umbilical cord blood CD34 (+) hematopoietic stem cell expansion in co-culture with bone marrow mesenchymal stem cells in the presence of TEPA.
    Zaker F; Nasiri N; Oodi A; Amirizadeh N
    Hematology; 2013 Jan; 18(1):39-45. PubMed ID: 23321686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.