These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 18047529)

  • 1. Efficient statistical inference procedures for partially nonlinear models and their applications.
    Li R; Nie L
    Biometrics; 2008 Sep; 64(3):904-911. PubMed ID: 18047529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Varying Coefficient Models with Applications to Studying Photosynthesis.
    Kürüm E; Li R; Wang Y; SEntürk D
    J Agric Biol Environ Stat; 2014 Mar; 19(1):57-81. PubMed ID: 24976756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadratic inference functions for varying-coefficient models with longitudinal data.
    Qu A; Li R
    Biometrics; 2006 Jun; 62(2):379-91. PubMed ID: 16918902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partially linear structure selection in Cox models with varying coefficients.
    Lian H; Lai P; Liang H
    Biometrics; 2013 Jun; 69(2):348-57. PubMed ID: 23796105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of partially linear structure in additive models with an application to gene expression prediction from sequences.
    Lian H; Chen X; Yang JY
    Biometrics; 2012 Jun; 68(2):437-45. PubMed ID: 21950383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric variable selection in generalized partially linear models with an application to assess condom use by HIV-infected patients.
    Leng C; Liang H; Martinson N
    Stat Med; 2011 Jul; 30(16):2015-27. PubMed ID: 21465515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing conditional quantile independence with functional covariate.
    Feng Y; Li J; Song X
    Biometrics; 2024 Mar; 80(2):. PubMed ID: 38742907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian lasso for semiparametric structural equation models.
    Guo R; Zhu H; Chow SM; Ibrahim JG
    Biometrics; 2012 Jun; 68(2):567-77. PubMed ID: 22376150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A partially linear additive model for clustered proportion data.
    Zhao W; Lian H; Bandyopadhyay D
    Stat Med; 2018 Mar; 37(6):1009-1030. PubMed ID: 29243338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS.
    Kai B; Li R; Zou H
    Ann Stat; 2011 Feb; 39(1):305-332. PubMed ID: 21666869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized partially linear single-index model for zero-inflated count data.
    Wang X; Zhang J; Yu L; Yin G
    Stat Med; 2015 Feb; 34(5):876-86. PubMed ID: 25421596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Longitudinal Data with Semiparametric Estimation of Covariance Function.
    Fan J; Huang T; Li R
    J Am Stat Assoc; 2007 Jun; 102(478):632-641. PubMed ID: 19707537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact two-sample inference with missing data.
    Cheung YK
    Biometrics; 2005 Jun; 61(2):524-31. PubMed ID: 16011700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Penalized Quadratic Inference Function-Based Variable Selection for Generalized Partially Linear Varying Coefficient Models with Longitudinal Data.
    Zhang J; Xue L
    Comput Math Methods Med; 2020; 2020():3505306. PubMed ID: 33082838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential estimation in line transect surveys.
    Chen SX; Yip PS; Zhou Y
    Biometrics; 2002 Jun; 58(2):263-9. PubMed ID: 12071398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating data transformations in nonlinear mixed effects models.
    Oberg A; Davidian M
    Biometrics; 2000 Mar; 56(1):65-72. PubMed ID: 10783778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and Parametric Estimation in a Semi- and Nonparametric Model with Application to Mass-Spectrometry Data.
    Ma W; Feng Y; Chen K; Ying Z
    Int J Biostat; 2015 Nov; 11(2):285-303. PubMed ID: 26529566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonparametric tests for homogeneity of species assemblages: a data depth approach.
    Li J; Ban J; Santiago LS
    Biometrics; 2011 Dec; 67(4):1481-8. PubMed ID: 21385165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators.
    Arribas-Gil A; De la Cruz R; Lebarbier E; Meza C
    Biometrics; 2015 Jun; 71(2):333-43. PubMed ID: 25639332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.