BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 18047582)

  • 1. A stepwise model for double-stranded RNA processing by ribonuclease III.
    Gan J; Shaw G; Tropea JE; Waugh DS; Court DL; Ji X
    Mol Microbiol; 2008 Jan; 67(1):143-54. PubMed ID: 18047582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single processing center models for human Dicer and bacterial RNase III.
    Zhang H; Kolb FA; Jaskiewicz L; Westhof E; Filipowicz W
    Cell; 2004 Jul; 118(1):57-68. PubMed ID: 15242644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for non-catalytic and catalytic activities of ribonuclease III.
    Ji X
    Acta Crystallogr D Biol Crystallogr; 2006 Aug; 62(Pt 8):933-40. PubMed ID: 16855311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Functional Cycle of Rnt1p: Five Consecutive Steps of Double-Stranded RNA Processing by a Eukaryotic RNase III.
    Song H; Fang X; Jin L; Shaw GX; Wang YX; Ji X
    Structure; 2017 Feb; 25(2):353-363. PubMed ID: 28111020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p.
    Lamontagne B; Hannoush RN; Damha MJ; Abou Elela S
    J Mol Biol; 2004 Apr; 338(2):401-18. PubMed ID: 15066440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediate states of ribonuclease III in complex with double-stranded RNA.
    Gan J; Tropea JE; Austin BP; Court DL; Waugh DS; Ji X
    Structure; 2005 Oct; 13(10):1435-42. PubMed ID: 16216575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homodimeric structure and double-stranded RNA cleavage activity of the C-terminal RNase III domain of human dicer.
    Takeshita D; Zenno S; Lee WC; Nagata K; Saigo K; Tanokura M
    J Mol Biol; 2007 Nov; 374(1):106-20. PubMed ID: 17920623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncatalytic assembly of ribonuclease III with double-stranded RNA.
    Blaszczyk J; Gan J; Tropea JE; Court DL; Waugh DS; Ji X
    Structure; 2004 Mar; 12(3):457-66. PubMed ID: 15016361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III.
    Gan J; Tropea JE; Austin BP; Court DL; Waugh DS; Ji X
    Cell; 2006 Jan; 124(2):355-66. PubMed ID: 16439209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III.
    Henras AK; Sam M; Hiley SL; Wu H; Hughes TR; Feigon J; Chanfreau GF
    RNA; 2005 Aug; 11(8):1225-37. PubMed ID: 15987808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for double-stranded RNA processing by Dicer.
    Macrae IJ; Zhou K; Li F; Repic A; Brooks AN; Cande WZ; Adams PD; Doudna JA
    Science; 2006 Jan; 311(5758):195-8. PubMed ID: 16410517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New approaches to understanding double-stranded RNA processing by ribonuclease III purification and assays of homodimeric and heterodimeric forms of RNase III from bacterial extremophiles and mesophiles.
    Meng W; Nicholson RH; Nathania L; Pertzev AV; Nicholson AW
    Methods Enzymol; 2008; 447():119-29. PubMed ID: 19161841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.
    Sam M; Henras AK; Chanfreau G
    Biochemistry; 2005 Mar; 44(11):4181-7. PubMed ID: 15766245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the reactivity determinants of a novel hairpin substrate of yeast RNase III.
    Ghazal G; Elela SA
    J Mol Biol; 2006 Oct; 363(2):332-44. PubMed ID: 16962133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III.
    Leulliot N; Quevillon-Cheruel S; Graille M; van Tilbeurgh H; Leeper TC; Godin KS; Edwards TE; Sigurdsson ST; Rozenkrants N; Nagel RJ; Ares M; Varani G
    EMBO J; 2004 Jul; 23(13):2468-77. PubMed ID: 15192703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and biochemical insights into the dicing mechanism of mouse Dicer: a conserved lysine is critical for dsRNA cleavage.
    Du Z; Lee JK; Tjhen R; Stroud RM; James TL
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2391-6. PubMed ID: 18268334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of Rnt1p: An alternative to RNAi for targeted RNA degradation.
    Abou Elela S; Ji X
    Wiley Interdiscip Rev RNA; 2019 May; 10(3):e1521. PubMed ID: 30548404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis.
    Sun W; Pertzev A; Nicholson AW
    Nucleic Acids Res; 2005; 33(3):807-15. PubMed ID: 15699182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for Dicer-like function of an engineered RNase III variant and insights into the reaction trajectory of two-Mg
    Dharavath S; Shaw GX; Ji X
    RNA Biol; 2022 Jan; 19(1):908-915. PubMed ID: 35829618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.