These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite. Stolze L; Zhang D; Guo H; Rolle M Environ Sci Technol; 2019 Jun; 53(12):6845-6854. PubMed ID: 31117535 [TBL] [Abstract][Full Text] [Related]
3. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611 [TBL] [Abstract][Full Text] [Related]
4. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520 [TBL] [Abstract][Full Text] [Related]
5. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides. Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118 [TBL] [Abstract][Full Text] [Related]
6. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Coker VS; Gault AG; Pearce CI; van der Laan G; Telling ND; Charnock JM; Polya DA; Lloyd JR Environ Sci Technol; 2006 Dec; 40(24):7745-50. PubMed ID: 17256522 [TBL] [Abstract][Full Text] [Related]
7. Effects of Calcium on Arsenate Adsorption and Arsenate/Iron Bioreduction of Ferrihydrite in Stimulated Groundwater. Chen M; Xie Z; Yang Y; Gao B; Wang J Int J Environ Res Public Health; 2022 Mar; 19(6):. PubMed ID: 35329158 [TBL] [Abstract][Full Text] [Related]
8. Impact of Organic Matter on Microbially-Mediated Reduction and Mobilization of Arsenic and Iron in Arsenic(V)-Bearing Ferrihydrite. Cai X; ThomasArrigo LK; Fang X; Bouchet S; Cui Y; Kretzschmar R Environ Sci Technol; 2021 Jan; 55(2):1319-1328. PubMed ID: 33377766 [TBL] [Abstract][Full Text] [Related]
9. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
10. Emerging investigator series: interdependency of green rust transformation and the partitioning and binding mode of arsenic. van Genuchten CM; Behrends T; Dideriksen K Environ Sci Process Impacts; 2019 Sep; 21(9):1459-1476. PubMed ID: 31353376 [TBL] [Abstract][Full Text] [Related]
11. The effect of biogeochemical redox oscillations on arsenic release from legacy mine tailings. Liu Y; Root RA; Abramson N; Fan L; Sun J; Liu C; Chorover J Geochim Cosmochim Acta; 2023 Nov; 360():192-206. PubMed ID: 37928745 [TBL] [Abstract][Full Text] [Related]
12. Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Zhao Z; Jia Y; Xu L; Zhao S Water Res; 2011 Dec; 45(19):6496-504. PubMed ID: 22000059 [TBL] [Abstract][Full Text] [Related]
13. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater. Zhang D; Guo H; Xiu W; Ni P; Zheng H; Wei C J Hazard Mater; 2017 Jan; 321():228-237. PubMed ID: 27631685 [TBL] [Abstract][Full Text] [Related]
14. Effect of sulfide on As(III) and As(V) sequestration by ferrihydrite. Zhao Z; Wang S; Jia Y Chemosphere; 2017 Oct; 185():321-328. PubMed ID: 28704663 [TBL] [Abstract][Full Text] [Related]
15. Iron and arsenic cycling in intertidal surface sediments during wetland remediation. Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA Environ Sci Technol; 2011 Mar; 45(6):2179-85. PubMed ID: 21322553 [TBL] [Abstract][Full Text] [Related]
16. Contrasting effects of dissimilatory iron (III) and arsenic (V) reduction on arsenic retention and transport. Kocar BD; Herbel MJ; Tufano KJ; Fendorf S Environ Sci Technol; 2006 Nov; 40(21):6715-21. PubMed ID: 17144301 [TBL] [Abstract][Full Text] [Related]
17. Effects of biochar/AQDS on As(III)-adsorbed ferrihydrite reduction and arsenic (As) and iron (Fe) transformation: Abiotic and biological conditions. An W; Wu C; Xue S; Liu Z; Liu M; Li W Chemosphere; 2022 Mar; 291(Pt 3):133126. PubMed ID: 34861266 [TBL] [Abstract][Full Text] [Related]
18. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
19. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
20. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions. Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]