These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 18047682)
21. Glycoproteomic Characterization of FUT8 Knock-Out CHO Cells Reveals Roles of FUT8 in the Glycosylation. Yang G; Wang Q; Chen L; Betenbaugh MJ; Zhang H Front Chem; 2021; 9():755238. PubMed ID: 34778211 [TBL] [Abstract][Full Text] [Related]
22. Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood. Iida S; Kuni-Kamochi R; Mori K; Misaka H; Inoue M; Okazaki A; Shitara K; Satoh M BMC Cancer; 2009 Feb; 9():58. PubMed ID: 19226457 [TBL] [Abstract][Full Text] [Related]
23. Core fucosylation within the Fc-FcγR degradation pathway promotes enhanced IgG levels via exogenous L-fucose. Sun Y; Xu X; Wu T; Fukuda T; Isaji T; Morii S; Nakano M; Gu J J Biol Chem; 2024 Aug; 300(8):107558. PubMed ID: 39002669 [TBL] [Abstract][Full Text] [Related]
24. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded antibody comprising a single-chain antibody linked the antibody constant region. Natsume A; Wakitani M; Yamane-Ohnuki N; Shoji-Hosaka E; Niwa R; Uchida K; Satoh M; Shitara K J Immunol Methods; 2005 Nov; 306(1-2):93-103. PubMed ID: 16236307 [TBL] [Abstract][Full Text] [Related]
25. A defucosylated anti-CD317 antibody exhibited enhanced antibody-dependent cellular cytotoxicity against primary myeloma cells in the presence of effectors from patients. Ishiguro T; Kawai S; Habu K; Sugimoto M; Shiraiwa H; Iijima S; Ozaki S; Matsumoto T; Yamada-Okabe H Cancer Sci; 2010 Oct; 101(10):2227-33. PubMed ID: 20701608 [TBL] [Abstract][Full Text] [Related]
26. Producing defucosylated antibodies with enhanced in vitro antibody-dependent cellular cytotoxicity via Zong H; Han L; Ding K; Wang J; Sun T; Zhang X; Cagliero C; Jiang H; Xie Y; Xu J; Zhang B; Zhu J Eng Life Sci; 2017 Jul; 17(7):801-808. PubMed ID: 32624826 [TBL] [Abstract][Full Text] [Related]
27. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded bispecific antibody comprising of two single-chain antibodies linked to the antibody constant region. Natsume A; Wakitani M; Yamane-Ohnuki N; Shoji-Hosaka E; Niwa R; Uchida K; Satoh M; Shitara K J Biochem; 2006 Sep; 140(3):359-68. PubMed ID: 16861252 [TBL] [Abstract][Full Text] [Related]
28. Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function. Popp O; Moser S; Zielonka J; Rüger P; Hansen S; Plöttner O MAbs; 2018; 10(2):290-303. PubMed ID: 29173063 [TBL] [Abstract][Full Text] [Related]
29. Comparison of two glycoengineering strategies to control the fucosylation of a monoclonal antibody. Mishra N; Spearman M; Donald L; Perreault H; Butler M J Biotechnol; 2020; 324S():100015. PubMed ID: 34154738 [TBL] [Abstract][Full Text] [Related]
30. Revisiting the substrate specificity of mammalian α1,6-fucosyltransferase reveals that it catalyzes core fucosylation of Yang Q; Zhang R; Cai H; Wang LX J Biol Chem; 2017 Sep; 292(36):14796-14803. PubMed ID: 28729420 [TBL] [Abstract][Full Text] [Related]
32. The N-linked oligosaccharide at Fc gamma RIIIa Asn-45: an inhibitory element for high Fc gamma RIIIa binding affinity to IgG glycoforms lacking core fucosylation. Shibata-Koyama M; Iida S; Okazaki A; Mori K; Kitajima-Miyama K; Saitou S; Kakita S; Kanda Y; Shitara K; Kato K; Satoh M Glycobiology; 2009 Feb; 19(2):126-34. PubMed ID: 18952826 [TBL] [Abstract][Full Text] [Related]
33. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC. Repp R; Kellner C; Muskulus A; Staudinger M; Nodehi SM; Glorius P; Akramiene D; Dechant M; Fey GH; van Berkel PH; van de Winkel JG; Parren PW; Valerius T; Gramatzki M; Peipp M J Immunol Methods; 2011 Oct; 373(1-2):67-78. PubMed ID: 21855548 [TBL] [Abstract][Full Text] [Related]
34. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Ferrara C; Brünker P; Suter T; Moser S; Püntener U; Umaña P Biotechnol Bioeng; 2006 Apr; 93(5):851-61. PubMed ID: 16435400 [TBL] [Abstract][Full Text] [Related]
35. Difucosylation of chitooligosaccharides by eukaryote and prokaryote α1,6-fucosyltransferases. Ihara H; Hanashima S; Tsukamoto H; Yamaguchi Y; Taniguchi N; Ikeda Y Biochim Biophys Acta; 2013 Oct; 1830(10):4482-90. PubMed ID: 23688399 [TBL] [Abstract][Full Text] [Related]
36. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Ferrara C; Grau S; Jäger C; Sondermann P; Brünker P; Waldhauer I; Hennig M; Ruf A; Rufer AC; Stihle M; Umaña P; Benz J Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12669-74. PubMed ID: 21768335 [TBL] [Abstract][Full Text] [Related]
37. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. Niwa R; Natsume A; Uehara A; Wakitani M; Iida S; Uchida K; Satoh M; Shitara K J Immunol Methods; 2005 Nov; 306(1-2):151-60. PubMed ID: 16219319 [TBL] [Abstract][Full Text] [Related]
38. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. Tu CF; Wu MY; Lin YC; Kannagi R; Yang RB Breast Cancer Res; 2017 Oct; 19(1):111. PubMed ID: 28982386 [TBL] [Abstract][Full Text] [Related]
39. Appropriate aglycone modification significantly expands the glycan substrate acceptability of α1,6-fucosyltransferase (FUT8). Zhang R; Yang Q; Boruah BM; Zong G; Li C; Chapla D; Yang JY; Moremen KW; Wang LX Biochem J; 2021 Apr; 478(8):1571-1583. PubMed ID: 33734311 [TBL] [Abstract][Full Text] [Related]
40. Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies. Chan KF; Shahreel W; Wan C; Teo G; Hayati N; Tay SJ; Tong WH; Yang Y; Rudd PM; Zhang P; Song Z Biotechnol J; 2016 Mar; 11(3):399-414. PubMed ID: 26471004 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]