These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18047712)

  • 21. Learning the structure of gene regulatory networks from time series gene expression data.
    Li H; Wang N; Gong P; Perkins EJ; Zhang C
    BMC Genomics; 2011 Dec; 12 Suppl 5(Suppl 5):S13. PubMed ID: 22369588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An integrated comprehensive workbench for inferring genetic networks: voyagene.
    Maki Y; Takahashi Y; Arikawa Y; Watanabe S; Aoshima K; Eguchi Y; Ueda T; Aburatani S; Kuhara S; Okamoto M
    J Bioinform Comput Biol; 2004 Sep; 2(3):533-50. PubMed ID: 15359425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross-platform microarray data normalisation for regulatory network inference.
    Sîrbu A; Ruskin HJ; Crane M
    PLoS One; 2010 Nov; 5(11):e13822. PubMed ID: 21103045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis and practical guideline of constraint-based boolean method in genetic network inference.
    Saithong T; Bumee S; Liamwirat C; Meechai A
    PLoS One; 2012; 7(1):e30232. PubMed ID: 22272315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic algorithm for inferring qualitative models of gene regulatory networks.
    Yun Z; Keong KC
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():353-62. PubMed ID: 16448028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constructing and analyzing a large-scale gene-to-gene regulatory network--lasso-constrained inference and biological validation.
    Gustafsson M; Hörnquist M; Lombardi A
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(3):254-61. PubMed ID: 17044188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boolean modeling of biological regulatory networks: a methodology tutorial.
    Saadatpour A; Albert R
    Methods; 2013 Jul; 62(1):3-12. PubMed ID: 23142247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian dynamic multivariate models for inferring gene interaction networks.
    Liang Y; Kelemen A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2041-4. PubMed ID: 17946930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exact Identification of the Structure of a Probabilistic Boolean Network from Samples.
    Cheng X; Mori T; Qiu Y; Ching WK; Akutsu T
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1107-1116. PubMed ID: 26661790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating sparse gene regulatory networks using a bayesian linear regression.
    Sarder P; Schierding W; Cobb JP; Nehorai A
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):121-31. PubMed ID: 20650703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors.
    Beal MJ; Falciani F; Ghahramani Z; Rangel C; Wild DL
    Bioinformatics; 2005 Feb; 21(3):349-56. PubMed ID: 15353451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bayesian integration of biological prior knowledge into the reconstruction of gene regulatory networks with Bayesian networks.
    Husmeier D; Werhli AV
    Comput Syst Bioinformatics Conf; 2007; 6():85-95. PubMed ID: 17951815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential and trajectory methods for time course gene expression data.
    Liang Y; Tayo B; Cai X; Kelemen A
    Bioinformatics; 2005 Jul; 21(13):3009-16. PubMed ID: 15886280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene network inference from incomplete expression data: transcriptional control of hematopoietic commitment.
    Missal K; Cross MA; Drasdo D
    Bioinformatics; 2006 Mar; 22(6):731-8. PubMed ID: 16332705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach.
    de Luis Balaguer MA; Sozzani R
    Methods Mol Biol; 2017; 1629():331-348. PubMed ID: 28623595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Properties of sparse penalties on inferring gene regulatory networks from time-course gene expression data.
    Liu LZ; Wu FX; Zhang WJ
    IET Syst Biol; 2015 Feb; 9(1):16-24. PubMed ID: 25569860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. F-MAP: A Bayesian approach to infer the gene regulatory network using external hints.
    Shahdoust M; Pezeshk H; Mahjub H; Sadeghi M
    PLoS One; 2017; 12(9):e0184795. PubMed ID: 28938012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inferring gene expression dynamics via functional regression analysis.
    Müller HG; Chiou JM; Leng X
    BMC Bioinformatics; 2008 Jan; 9():60. PubMed ID: 18226220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving gene network inference by comparing expression time-series across species, developmental stages or tissues.
    Bourque G; Sankoff D
    J Bioinform Comput Biol; 2004 Dec; 2(4):765-83. PubMed ID: 15617165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.