These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect. Veit G; Oliver K; Apaja PM; Perdomo D; Bidaud-Meynard A; Lin ST; Guo J; Icyuz M; Sorscher EJ; Hartman JL; Lukacs GL PLoS Biol; 2016 May; 14(5):e1002462. PubMed ID: 27168400 [TBL] [Abstract][Full Text] [Related]
9. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR). Caohuy H; Yang Q; Eudy Y; Ha TA; Xu AE; Glover M; Frizzell RA; Jozwik C; Pollard HB J Biol Chem; 2014 Dec; 289(52):35953-68. PubMed ID: 25384981 [TBL] [Abstract][Full Text] [Related]
10. Degradation of CFTR by the ubiquitin-proteasome pathway. Ward CL; Omura S; Kopito RR Cell; 1995 Oct; 83(1):121-7. PubMed ID: 7553863 [TBL] [Abstract][Full Text] [Related]
11. CFTR Folding: From Structure and Proteostasis to Cystic Fibrosis Personalized Medicine. McDonald EF; Meiler J; Plate L ACS Chem Biol; 2023 Oct; 18(10):2128-2143. PubMed ID: 37730207 [TBL] [Abstract][Full Text] [Related]
12. Chemical conjugation of DeltaF508-CFTR corrector deoxyspergualin to transporter human serum albumin enhances its ability to rescue Cl- channel functions. Norez C; Pasetto M; Dechecchi MC; Barison E; Anselmi C; Tamanini A; Quiri F; Cattel L; Rizzotti P; Dosio F; Cabrini G; Colombatti M Am J Physiol Lung Cell Mol Physiol; 2008 Aug; 295(2):L336-47. PubMed ID: 18515409 [TBL] [Abstract][Full Text] [Related]
13. RNF185 is a novel E3 ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR). El Khouri E; Le Pavec G; Toledano MB; Delaunay-Moisan A J Biol Chem; 2013 Oct; 288(43):31177-91. PubMed ID: 24019521 [TBL] [Abstract][Full Text] [Related]
14. Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator. Skach WR Kidney Int; 2000 Mar; 57(3):825-31. PubMed ID: 10720935 [TBL] [Abstract][Full Text] [Related]
15. Role of the ubiquitin proteasome system in renal cell carcinoma. Corn PG BMC Biochem; 2007 Nov; 8 Suppl 1(Suppl 1):S4. PubMed ID: 18047741 [TBL] [Abstract][Full Text] [Related]
16. Chaperone-Independent Peripheral Quality Control of CFTR by RFFL E3 Ligase. Okiyoneda T; Veit G; Sakai R; Aki M; Fujihara T; Higashi M; Susuki-Miyata S; Miyata M; Fukuda N; Yoshida A; Xu H; Apaja PM; Lukacs GL Dev Cell; 2018 Mar; 44(6):694-708.e7. PubMed ID: 29503157 [TBL] [Abstract][Full Text] [Related]
17. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. Bebök Z; Mazzochi C; King SA; Hong JS; Sorscher EJ J Biol Chem; 1998 Nov; 273(45):29873-8. PubMed ID: 9792704 [TBL] [Abstract][Full Text] [Related]
18. Syntaxin 8 and the Endoplasmic Reticulum Processing of ΔF508-CFTR. Sabirzhanova I; Boinot C; Guggino WB; Cebotaru L Cell Physiol Biochem; 2018; 51(3):1489-1499. PubMed ID: 30485852 [TBL] [Abstract][Full Text] [Related]
19. Role of the ubiquitin proteasome system in Parkinson's disease. Lim KL; Tan JM BMC Biochem; 2007 Nov; 8 Suppl 1(Suppl 1):S13. PubMed ID: 18047737 [TBL] [Abstract][Full Text] [Related]
20. Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy. Kim Chiaw P; Eckford PD; Bear CE Essays Biochem; 2011 Sep; 50(1):233-48. PubMed ID: 21967060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]