These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 18048054)
61. Type 1 fimbriae of insecticidal bacterium Xenorhabdus nematophila is necessary for growth and colonization of its symbiotic host nematode Steinernema carpocapsiae. Chandra H; Khandelwal P; Khattri A; Banerjee N Environ Microbiol; 2008 May; 10(5):1285-95. PubMed ID: 18279345 [TBL] [Abstract][Full Text] [Related]
62. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. Ji D; Yi Y; Kang GH; Choi YH; Kim P; Baek NI; Kim Y FEMS Microbiol Lett; 2004 Oct; 239(2):241-8. PubMed ID: 15476972 [TBL] [Abstract][Full Text] [Related]
63. Induction of phenoloxidase and other immunological activities in Sydney rock oysters challenged with microbial pathogen-associate molecular patterns. Aladaileh S; Nair SV; Raftos DA Fish Shellfish Immunol; 2007 Dec; 23(6):1196-208. PubMed ID: 17977020 [TBL] [Abstract][Full Text] [Related]
64. A novel role for an insect apolipoprotein (apolipophorin III) in beta-1,3-glucan pattern recognition and cellular encapsulation reactions. Whitten MM; Tew IF; Lee BL; Ratcliffe NA J Immunol; 2004 Feb; 172(4):2177-85. PubMed ID: 14764684 [TBL] [Abstract][Full Text] [Related]
65. Immunosuppressive effect of cyclosporin A on insect humoral immune response. Fiolka MJ J Invertebr Pathol; 2008 Jul; 98(3):287-92. PubMed ID: 18472108 [TBL] [Abstract][Full Text] [Related]
66. Interaction of mutants of Xenorhabdus nematophilus (Enterobacteriaceae) with antibacterial systems of Galleria mellonella larvae (Insecta: Pyralidae). Dunphy GB Can J Microbiol; 1994 Mar; 40(3):161-8. PubMed ID: 8012904 [TBL] [Abstract][Full Text] [Related]
67. Prophenoloxidase binds to the surface of hemocytes and is involved in hemocyte melanization in Manduca sexta. Ling E; Yu XQ Insect Biochem Mol Biol; 2005 Dec; 35(12):1356-66. PubMed ID: 16291091 [TBL] [Abstract][Full Text] [Related]
68. Disruption of haemocyte function by exposure to cytochalasin b or nocodazole increases the susceptibility of Galleria mellonella larvae to infection. Banville N; Fallon J; McLoughlin K; Kavanagh K Microbes Infect; 2011 Dec; 13(14-15):1191-8. PubMed ID: 21782965 [TBL] [Abstract][Full Text] [Related]
69. Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). Haine ER; Pollitt LC; Moret Y; Siva-Jothy MT; Rolff J J Insect Physiol; 2008 Jun; 54(6):1090-7. PubMed ID: 18513740 [TBL] [Abstract][Full Text] [Related]
70. Venom of Euplectrus separatae causes hyperlipidemia by lysis of host fat body cells. Nakamatsu Y; Tanaka T J Insect Physiol; 2004 Apr; 50(4):267-75. PubMed ID: 15081819 [TBL] [Abstract][Full Text] [Related]
71. Analysis of Xenorhabdus nematophila metabolic mutants yields insight into stages of Steinernema carpocapsae nematode intestinal colonization. Martens EC; Russell FM; Goodrich-Blair H Mol Microbiol; 2005 Oct; 58(1):28-45. PubMed ID: 16164547 [TBL] [Abstract][Full Text] [Related]
72. Trypanosoma rangeli: effects of physalin B on the immune reactions of the infected larvae of Rhodnius prolixus. Garcia ES; Castro DP; Ribeiro IM; Tomassini TC; Azambuja P Exp Parasitol; 2006 Jan; 112(1):37-43. PubMed ID: 16271717 [TBL] [Abstract][Full Text] [Related]
73. Response of the insect immune system to three different immune challenges. Charles HM; Killian KA J Insect Physiol; 2015 Oct; 81():97-108. PubMed ID: 26164746 [TBL] [Abstract][Full Text] [Related]
74. Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. Manachini B; Arizza V; Parrinello D; Parrinello N J Invertebr Pathol; 2011 Mar; 106(3):360-5. PubMed ID: 21147119 [TBL] [Abstract][Full Text] [Related]
75. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. Eom S; Park Y; Kim H; Kim Y J Microbiol Biotechnol; 2014 Apr; 24(4):507-21. PubMed ID: 24394195 [TBL] [Abstract][Full Text] [Related]
76. Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Tseng DY; Ho PL; Huang SY; Cheng SC; Shiu YL; Chiu CS; Liu CH Fish Shellfish Immunol; 2009 Feb; 26(2):339-44. PubMed ID: 19111620 [TBL] [Abstract][Full Text] [Related]
77. Regulation of melanization by glutathione in the moth Pseudoplusia includens. Clark KD; Lu Z; Strand MR Insect Biochem Mol Biol; 2010 Jun; 40(6):460-7. PubMed ID: 20417279 [TBL] [Abstract][Full Text] [Related]
78. A continuous cell line, SYSU-OfHe-C, from hemocytes of Ostrinia furnacalis possesses immune ability depending on the presence of larval plasma. Hu J; Feng X; Yang Z; Chen Z; Zhang W Dev Comp Immunol; 2014 Jul; 45(1):10-20. PubMed ID: 24513271 [TBL] [Abstract][Full Text] [Related]
79. A viral lectin encoded in Cotesia plutellae bracovirus and its immunosuppressive effect on host hemocytes. Lee S; Nalini M; Kim Y Comp Biochem Physiol A Mol Integr Physiol; 2008 Apr; 149(4):351-61. PubMed ID: 18325805 [TBL] [Abstract][Full Text] [Related]
80. Effect of Beauveria bassiana and Candida albicans on the cellular defense response of Spodoptera exigua. Hung SY; Boucias DG; Vey AJ J Invertebr Pathol; 1993 Mar; 61(2):179-87. PubMed ID: 8463710 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]