These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 18048054)
81. A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. Nalini M; Kim Y J Insect Physiol; 2007 Dec; 53(12):1283-92. PubMed ID: 17706666 [TBL] [Abstract][Full Text] [Related]
82. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). Campos-Herrera R; Tailliez P; Pagès S; Ginibre N; Gutiérrez C; Boemare NE J Invertebr Pathol; 2009 Oct; 102(2):173-81. PubMed ID: 19682458 [TBL] [Abstract][Full Text] [Related]
83. A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells. Brivio MF; Mastore M; Nappi AJ Dev Comp Immunol; 2010 Sep; 34(9):991-8. PubMed ID: 20457179 [TBL] [Abstract][Full Text] [Related]
84. Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics. Zorko M; Jerala R J Antimicrob Chemother; 2008 Oct; 62(4):730-7. PubMed ID: 18635521 [TBL] [Abstract][Full Text] [Related]
85. A novel pilin subunit from Xenorhabdus nematophila, an insect pathogen, confers pest resistance in tobacco and tomato. Kumari P; Mahapatro GK; Banerjee N; Sarin NB Plant Cell Rep; 2015 Nov; 34(11):1863-72. PubMed ID: 26164296 [TBL] [Abstract][Full Text] [Related]
86. Adipokinetic hormone enhances nodule formation and phenoloxidase activation in adult locusts injected with bacterial lipopolysaccharide. Goldsworthy G; Chandrakant S; Opoku-Ware K J Insect Physiol; 2003 Aug; 49(8):795-803. PubMed ID: 12880660 [TBL] [Abstract][Full Text] [Related]
87. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. Vigneux F; Zumbihl R; Jubelin G; Ribeiro C; Poncet J; Baghdiguian S; Givaudan A; Brehélin M J Biol Chem; 2007 Mar; 282(13):9571-9580. PubMed ID: 17229739 [TBL] [Abstract][Full Text] [Related]
88. The competence of hemocyte immunity in the armyworm Mythimna separata larvae to sublethal hexaflumuron exposure. Huang Q; Zhang L; Yang C; Yun X; He Y Pestic Biochem Physiol; 2016 Jun; 130():31-38. PubMed ID: 27155481 [TBL] [Abstract][Full Text] [Related]
90. Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cowles KN; Goodrich-Blair H Cell Microbiol; 2005 Feb; 7(2):209-19. PubMed ID: 15659065 [TBL] [Abstract][Full Text] [Related]
91. Variation in pathogenicity of different strains of Xenorhabdus nematophila; Differential immunosuppressive activities and secondary metabolite production. Hasan MA; Ahmed S; Mollah MMI; Lee D; Kim Y J Invertebr Pathol; 2019 Sep; 166():107221. PubMed ID: 31356819 [TBL] [Abstract][Full Text] [Related]
92. Reexamination of phenoloxidase in larval circulating hemocytes of the silkworm, Bombyx mori. Ling E; Shirai K; Kanehatsu R; Kiguchi K Tissue Cell; 2005 Apr; 37(2):101-7. PubMed ID: 15748736 [TBL] [Abstract][Full Text] [Related]
93. The deterrent ability of Xenorhabdus nematophila and Photorhabdus laumondii compounds as a potential novel tool for Lobesia botrana (Lepidoptera: Tortricidae) management. Vicente-Díez I; Pou A; Campos-Herrera R J Invertebr Pathol; 2023 Jun; 198():107911. PubMed ID: 36921888 [TBL] [Abstract][Full Text] [Related]
94. Cecropins as a marker of Spodoptera frugiperda immunosuppression during entomopathogenic bacterial challenge. Duvic B; Jouan V; Essa N; Girard PA; Pagès S; Abi Khattar Z; Volkoff NA; Givaudan A; Destoumieux-Garzon D; Escoubas JM J Insect Physiol; 2012 Jun; 58(6):881-8. PubMed ID: 22487443 [TBL] [Abstract][Full Text] [Related]
95. CpxRA contributes to Xenorhabdus nematophila virulence through regulation of lrhA and modulation of insect immunity. Herbert Tran EE; Goodrich-Blair H Appl Environ Microbiol; 2009 Jun; 75(12):3998-4006. PubMed ID: 19376911 [TBL] [Abstract][Full Text] [Related]
96. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis. Goodrich-Blair H Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732 [TBL] [Abstract][Full Text] [Related]
97. Polypeptide antibiotic 26a from Bacillus subtilis. I. Taxonomy and fermentative production. Jarosz J Acta Microbiol Pol; 1978; 27(3):213-24. PubMed ID: 81595 [TBL] [Abstract][Full Text] [Related]
98. Interaction of hemocytes and prophenoloxidase system of fifth instar nymphs of Acheta domesticus with bacteria. da Silva C; Dunphy GB; Rau ME Dev Comp Immunol; 2000 Jun; 24(4):367-79. PubMed ID: 10736521 [TBL] [Abstract][Full Text] [Related]
99. Phenoloxidase activity in the hemolymph of the spiny lobster Panulirus argus. Perdomo-Morales R; Montero-Alejo V; Perera E; Pardo-Ruiz Z; Alonso-Jiménez E Fish Shellfish Immunol; 2007 Dec; 23(6):1187-95. PubMed ID: 17920930 [TBL] [Abstract][Full Text] [Related]
100. The role of hemocytes, serine protease inhibitors and pathogen-associated patterns in prophenoloxidase activation in the desert locust, Schistocerca gregaria. Franssens V; Simonet G; Breugelmans B; Van Soest S; Van Hoef V; Vanden Broeck J Peptides; 2008 Feb; 29(2):235-41. PubMed ID: 18207608 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]