These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18048077)

  • 1. Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: desorption and oxon formation.
    Ohno K; Minami T; Matsui Y; Magara Y
    Water Res; 2008 Mar; 42(6-7):1753-9. PubMed ID: 18048077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of prechlorination on organophosphorus pesticides during drinking water treatment: Removal and transformation to toxic oxon byproducts.
    Li W; Wu R; Duan J; Saint CP; van Leeuwen J
    Water Res; 2016 Nov; 105():1-10. PubMed ID: 27589240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC).
    Humbert H; Gallard H; Suty H; Croué JP
    Water Res; 2008 Mar; 42(6-7):1635-43. PubMed ID: 18006038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removals of pesticides and pesticide transformation products during drinking water treatment processes and their impact on mutagen formation potential after chlorination.
    Matsushita T; Morimoto A; Kuriyama T; Matsumoto E; Matsui Y; Shirasaki N; Kondo T; Takanashi H; Kameya T
    Water Res; 2018 Jul; 138():67-76. PubMed ID: 29573630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of triazine and organophosphorus pesticides on soil and biochar.
    Uchimiya M; Wartelle LH; Boddu VM
    J Agric Food Chem; 2012 Mar; 60(12):2989-97. PubMed ID: 22394556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of chlorination on anti-acetylcholinesterase activity of organophosphorus insecticide solutions and contributions of the parent insecticides and their oxons to the activity.
    Matsushita T; Fujita Y; Omori K; Huang Y; Matsui Y; Shirasaki N
    Chemosphere; 2020 Dec; 261():127743. PubMed ID: 32721694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon.
    Ikari M; Matsui Y; Suzuki Y; Matsushita T; Shirasaki N
    Water Res; 2015 Jan; 68():227-37. PubMed ID: 25462731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of organophosphorus pesticides in the presence of aqueous chlorine: kinetics, pathways, and structure-activity relationships.
    Duirk SE; Desetto LM; Davis GM
    Environ Sci Technol; 2009 Apr; 43(7):2335-40. PubMed ID: 19452883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorination of organophosphorus pesticides in natural waters.
    Acero JL; Benítez FJ; Real FJ; González M
    J Hazard Mater; 2008 May; 153(1-2):320-8. PubMed ID: 17904287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A convenient method for oxidation of organophosphorus pesticides in organic solvents.
    Kim YA; Lee HS; Park YC; Lee YT
    Environ Res; 2000 Nov; 84(3):303-9. PubMed ID: 11097804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii.
    Sparling DW; Fellers G
    Environ Pollut; 2007 Jun; 147(3):535-9. PubMed ID: 17218044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alumina sol-gel/sonogel-carbon electrode based on acetylcholinesterase for detection of organophosphorus pesticides.
    Zejli H; Hidalgo-Hidalgo de Cisneros JL; Naranjo-Rodriguez I; Liu B; Temsamani KR; Marty JL
    Talanta; 2008 Oct; 77(1):217-21. PubMed ID: 18804623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organophosphorus pesticide ozonation and formation of oxon intermediates.
    Wu J; Lan C; Chan GY
    Chemosphere; 2009 Aug; 76(9):1308-14. PubMed ID: 19539977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of organophosphorus pesticides and their ozonation byproducts on gap junctional intercellular communication in rat liver cell line.
    Wu J; Lin L; Luan T; Chan Gilbert YS; Lan C
    Food Chem Toxicol; 2007 Oct; 45(10):2057-63. PubMed ID: 17601646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of parthenium based activated carbon and its utilization for adsorptive removal of p-cresol from aqueous solution.
    Singh RK; Kumar S; Kumar S; Kumar A
    J Hazard Mater; 2008 Jul; 155(3):523-35. PubMed ID: 18207322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon.
    Matsui Y; Ando N; Sasaki H; Matsushita T; Ohno K
    Water Res; 2009 Jul; 43(12):3095-103. PubMed ID: 19457533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 1. Equilibrium parameters.
    Al Mardini F; Legube B
    J Hazard Mater; 2009 Oct; 170(2-3):744-53. PubMed ID: 19539425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation, adsorption and separation of high molecular weight disinfection byproducts resulting from chlorination of aquatic humic substances.
    Zhang X; Minear RA
    Water Res; 2006 Jan; 40(2):221-30. PubMed ID: 16343584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powdered activated carbon enhanced Manganese(II) removal by chlorine oxidation.
    Li G; Hao H; Zhuang Y; Wang Z; Shi B
    Water Res; 2019 Jun; 156():287-296. PubMed ID: 30925375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pesticides removal in the process of drinking water production.
    Ormad MP; Miguel N; Claver A; Matesanz JM; Ovelleiro JL
    Chemosphere; 2008 Mar; 71(1):97-106. PubMed ID: 18023468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.