These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18048124)

  • 1. Signal processing for functional analysis of protein mutants.
    Najarian K; Gopalakrishnan K; Zadeh RH
    Int J Bioinform Res Appl; 2005; 1(1):102-20. PubMed ID: 18048124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Prediction of HIV-1 Resistance to Protease Inhibitors.
    Hosseini A; Alibés A; Noguera-Julian M; Gil V; Paredes R; Soliva R; Orozco M; Guallar V
    J Chem Inf Model; 2016 May; 56(5):915-23. PubMed ID: 27082876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying representative drug resistant mutants of HIV.
    Yu X; Weber IT; Harrison RW
    BMC Bioinformatics; 2015; 16 Suppl 17(Suppl 17):S1. PubMed ID: 26678327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach.
    Masso M; Vaisman II
    Biochem Biophys Res Commun; 2003 May; 305(2):322-6. PubMed ID: 12745077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors.
    Braz AS; Tufanetto P; Perahia D; Scott LP
    Proteins; 2012 Dec; 80(12):2680-91. PubMed ID: 22821809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary analysis of HIV-1 protease inhibitors: Methods for design of inhibitors that evade resistance.
    Stoffler D; Sanner MF; Morris GM; Olson AJ; Goodsell DS
    Proteins; 2002 Jul; 48(1):63-74. PubMed ID: 12012338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution of discordant HIV-1 protease resistance rankings using molecular dynamics simulations.
    Wright DW; Coveney PV
    J Chem Inf Model; 2011 Oct; 51(10):2636-49. PubMed ID: 21902276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease.
    Altman MD; Nalivaika EA; Prabu-Jeyabalan M; Schiffer CA; Tidor B
    Proteins; 2008 Feb; 70(3):678-94. PubMed ID: 17729291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic lethals in HIV: ways to avoid drug resistance : Running title: Preventing HIV resistance.
    Petitjean M; Badel A; Veitia RA; Vanet A
    Biol Direct; 2015 Apr; 10():17. PubMed ID: 25888435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered gag polyprotein cleavage specificity of feline immunodeficiency virus/human immunodeficiency virus mutant proteases as demonstrated in a cell-based expression system.
    Lin YC; Brik A; de Parseval A; Tam K; Torbett BE; Wong CH; Elder JH
    J Virol; 2006 Aug; 80(16):7832-43. PubMed ID: 16873240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic model for comparing proteolytic processing activity and inhibitor resistance potential of mutant HIV-1 proteases.
    Tang J; Hartsuck JA
    FEBS Lett; 1995 Jun; 367(2):112-6. PubMed ID: 7796905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspartic proteases of Plasmodium falciparum as the target of HIV-1 protease inhibitors.
    Savarino A; Cauda R; Cassone A
    J Infect Dis; 2005 Apr; 191(8):1381-2; author reply 1382-3. PubMed ID: 15776390
    [No Abstract]   [Full Text] [Related]  

  • 15. Genetic selection for dissociative inhibitors of designated protein-protein interactions.
    Park SH; Raines RT
    Nat Biotechnol; 2000 Aug; 18(8):847-51. PubMed ID: 10932153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of molecular dynamics and free energy perturbation calculations in anti-human immunodeficiency virus drug design.
    McCarrick MA; Kollman P
    Methods Enzymol; 1994; 241():370-84. PubMed ID: 7854189
    [No Abstract]   [Full Text] [Related]  

  • 17. HIV-1 protease function and structure studies with the simplicial neighborhood analysis of protein packing method.
    Zhang S; Kaplan AH; Tropsha A
    Proteins; 2008 Nov; 73(3):742-53. PubMed ID: 18498108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hierarchical model of HIV-1 protease drug resistance.
    Goodsell DS
    Appl Bioinformatics; 2002; 1(1):3-12. PubMed ID: 15130852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification of the effects of drug resistance mutations by background polymorphisms in HIV-1 protease from African subtypes.
    Velazquez-Campoy A; Vega S; Freire E
    Biochemistry; 2002 Jul; 41(27):8613-9. PubMed ID: 12093278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.