BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18048179)

  • 41. Protein classification using sequential pattern mining.
    Exarchos TP; Papaloukas C; Lampros C; Fotiadis DI
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5814-7. PubMed ID: 17945916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remote protein homology detection and fold recognition using two-layer support vector machine classifiers.
    Muda HM; Saad P; Othman RM
    Comput Biol Med; 2011 Aug; 41(8):687-99. PubMed ID: 21704312
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new method to improve network topological similarity search: applied to fold recognition.
    Lhota J; Hauptman R; Hart T; Ng C; Xie L
    Bioinformatics; 2015 Jul; 31(13):2106-14. PubMed ID: 25717198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GANN: genetic algorithm neural networks for the detection of conserved combinations of features in DNA.
    Beiko RG; Charlebois RL
    BMC Bioinformatics; 2005 Feb; 6():36. PubMed ID: 15725347
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks.
    Liu B; Li CC; Yan K
    Brief Bioinform; 2020 Sep; 21(5):1733-1741. PubMed ID: 31665221
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving taxonomy-based protein fold recognition by using global and local features.
    Yang JY; Chen X
    Proteins; 2011 Jul; 79(7):2053-64. PubMed ID: 21538542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ensemble classifier for protein fold pattern recognition.
    Shen HB; Chou KC
    Bioinformatics; 2006 Jul; 22(14):1717-22. PubMed ID: 16672258
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of local structural preference potential improves fold recognition.
    Hu Y; Dong X; Wu A; Cao Y; Tian L; Jiang T
    PLoS One; 2011 Feb; 6(2):e17215. PubMed ID: 21365008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Template based protein structure modeling by global optimization in CASP11.
    Joo K; Joung I; Lee SY; Kim JY; Cheng Q; Manavalan B; Joung JY; Heo S; Lee J; Nam M; Lee IH; Lee SJ; Lee J
    Proteins; 2016 Sep; 84 Suppl 1():221-32. PubMed ID: 26329522
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast and accurate multi-class protein fold recognition with spatial sample kernels.
    Kuksa P; Huang PH; Pavlovic V
    Comput Syst Bioinformatics Conf; 2008; 7():133-43. PubMed ID: 19642275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CONTSOR--a new knowledge-based fold recognition potential, based on side chain orientation and contacts between residue terminal groups.
    Vishnepolsky B; Pirtskhalava M
    Protein Sci; 2012 Jan; 21(1):134-41. PubMed ID: 22057923
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein-fold recognition using an improved single-source K diverse shortest paths algorithm.
    Lhota J; Xie L
    Proteins; 2016 Apr; 84(4):467-72. PubMed ID: 26800480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein Fold Recognition Based on Auto-Weighted Multi-View Graph Embedding Learning Model.
    Yan K; Wen J; Xu Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2682-2691. PubMed ID: 32356759
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MotifCNN-fold: protein fold recognition based on fold-specific features extracted by motif-based convolutional neural networks.
    Li CC; Liu B
    Brief Bioinform; 2020 Dec; 21(6):2133-2141. PubMed ID: 31774907
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel model-based on FCM-LM algorithm for prediction of protein folding rate.
    Liu L; Ma M; Cui J
    J Bioinform Comput Biol; 2017 Aug; 15(4):1750012. PubMed ID: 28513252
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners.
    Pollastri G; Baldi P
    Bioinformatics; 2002; 18 Suppl 1():S62-70. PubMed ID: 12169532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.