These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 18048181)

  • 1. PRec-I-DCM3: a parallel framework for fast and accurate large-scale phylogeny reconstruction.
    Dotsenko Y; Coarfa C; Nakhleh L; Mellor-Crummey J; Roshan U
    Int J Bioinform Res Appl; 2006; 2(4):407-19. PubMed ID: 18048181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rec-I-DCM3: a fast algorithmic technique for reconstructing large phylogenetic trees.
    Roshan UW; Moret BM; Warnow T; Williams TL
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():98-109. PubMed ID: 16448004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using tree diversity to compare phylogenetic heuristics.
    Sul SJ; Matthews S; Williams TL
    BMC Bioinformatics; 2009 Apr; 10 Suppl 4(Suppl 4):S3. PubMed ID: 19426451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On divide-and-conquer strategies for parsimony analysis of large data sets: Rec-I-DCM3 versus TNT.
    Goloboff PA; Pol D
    Syst Biol; 2007 Jun; 56(3):485-95. PubMed ID: 17562472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of large phylogenetic trees: a parallel approach.
    Du Z; Lin F; Roshan UW
    Comput Biol Chem; 2005 Aug; 29(4):273-80. PubMed ID: 16040277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rec-DCM-Eigen: reconstructing a less parsimonious but more accurate tree in shorter time.
    Kang S; Tang J; Schaeffer SW; Bader DA
    PLoS One; 2011; 6(8):e22483. PubMed ID: 21887219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic algorithm for large-scale maximum parsimony phylogenetic analysis of proteins.
    Hill T; Lundgren A; Fredriksson R; Schiöth HB
    Biochim Biophys Acta; 2005 Aug; 1725(1):19-29. PubMed ID: 15990235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of ancestral genomic sequences using likelihood.
    Elias I; Tuller T
    J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Very fast algorithms for evaluating the stability of ML and Bayesian phylogenetic trees from sequence data.
    Waddell PJ; Kishino H; Ota R
    Genome Inform; 2002; 13():82-92. PubMed ID: 14571377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cophenetic Median Trees.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1459-1470. PubMed ID: 30222583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DPRml: distributed phylogeny reconstruction by maximum likelihood.
    Keane TM; Naughton TJ; Travers SA; McInerney JO; McCormack GP
    Bioinformatics; 2005 Apr; 21(7):969-74. PubMed ID: 15513992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating trees from filtered data: identifiability of models for morphological phylogenetics.
    Allman ES; Holder MT; Rhodes JA
    J Theor Biol; 2010 Mar; 263(1):108-19. PubMed ID: 20004210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring Trees.
    Whelan S; Morrison DA
    Methods Mol Biol; 2017; 1525():349-377. PubMed ID: 27896728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sharp error probability estimate for the reconstruction of phylogenetic quartets by the four-point method.
    Lacey MR; Calmes J
    J Comput Biol; 2009 Mar; 16(3):443-56. PubMed ID: 19254183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate phylogenetic tree reconstruction from quartets: a heuristic approach.
    Reaz R; Bayzid MS; Rahman MS
    PLoS One; 2014; 9(8):e104008. PubMed ID: 25117474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct maximum parsimony phylogeny reconstruction from genotype data.
    Sridhar S; Lam F; Blelloch GE; Ravi R; Schwartz R
    BMC Bioinformatics; 2007 Dec; 8():472. PubMed ID: 18053244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum likelihood of phylogenetic networks.
    Jin G; Nakhleh L; Snir S; Tuller T
    Bioinformatics; 2006 Nov; 22(21):2604-11. PubMed ID: 16928736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient algorithms for knowledge-enhanced supertree and supermatrix phylogenetic problems.
    Wehe A; Burleigh JG; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1432-41. PubMed ID: 24407302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum likelihood of evolutionary trees: hardness and approximation.
    Chor B; Tuller T
    Bioinformatics; 2005 Jun; 21 Suppl 1():i97-106. PubMed ID: 15961504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.