These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18048192)

  • 1. An ontology-based framework for bioinformatics workflows.
    Digiampietri LA; Perez-Alcazar Jde J; Medeiros CB
    Int J Bioinform Res Appl; 2007; 3(3):268-85. PubMed ID: 18048192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building a bioinformatics ontology using OIL.
    Stevens R; Goble C; Horrocks I; Bechhofer S
    IEEE Trans Inf Technol Biomed; 2002 Jun; 6(2):135-41. PubMed ID: 12075668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A framework based on Web service orchestration for bioinformatics workflow management.
    Digiampietri LA; Medeiros CB; Setubal JC
    Genet Mol Res; 2005 Sep; 4(3):535-42. PubMed ID: 16342038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Scientific Software Product Line for the Bioinformatics domain.
    Costa GC; Braga R; David JM; Campos F
    J Biomed Inform; 2015 Aug; 56():239-64. PubMed ID: 26079262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Workflows in bioinformatics: meta-analysis and prototype implementation of a workflow generator.
    Garcia Castro A; Thoraval S; Garcia LJ; Ragan MA
    BMC Bioinformatics; 2005 Apr; 6():87. PubMed ID: 15813976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of ontology merging tools in bioinformatics.
    Lambrix P; Edberg A
    Pac Symp Biocomput; 2003; ():589-600. PubMed ID: 12603060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biowep: a workflow enactment portal for bioinformatics applications.
    Romano P; Bartocci E; Bertolini G; De Paoli F; Marra D; Mauri G; Merelli E; Milanesi L
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S19. PubMed ID: 17430563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The (my)Grid ontology: bioinformatics service discovery.
    Wolstencroft K; Alper P; Hull D; Wroe C; Lord PW; Stevens RD; Goble CA
    Int J Bioinform Res Appl; 2007; 3(3):303-25. PubMed ID: 18048194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating in silico research with workflows: a lesson in Simplicity.
    Walsh P; Carroll J; Sleator RD
    Comput Biol Med; 2013 Dec; 43(12):2028-35. PubMed ID: 24290918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontology-based knowledge representation for bioinformatics.
    Stevens R; Goble CA; Bechhofer S
    Brief Bioinform; 2000 Nov; 1(4):398-414. PubMed ID: 11465057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated workflow composition in mass spectrometry-based proteomics.
    Palmblad M; Lamprecht AL; Ison J; Schwämmle V
    Bioinformatics; 2019 Feb; 35(4):656-664. PubMed ID: 30060113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AIBench: a rapid application development framework for translational research in biomedicine.
    Glez-Peña D; Reboiro-Jato M; Maia P; Rocha M; Díaz F; Fdez-Riverola F
    Comput Methods Programs Biomed; 2010 May; 98(2):191-203. PubMed ID: 20047774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OLS Client and OLS Dialog: Open Source Tools to Annotate Public Omics Datasets.
    Perez-Riverol Y; Ternent T; Koch M; Barsnes H; Vrousgou O; Jupp S; Vizcaíno JA
    Proteomics; 2017 Oct; 17(19):. PubMed ID: 28792687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementing bioinformatic workflows within the bioextract server.
    Lushbough CM; Bergman MK; Lawrence CJ; Jennewein D; Brendel V
    Int J Comput Biol Drug Des; 2008; 1(3):302-12. PubMed ID: 20054995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A criticality-based framework for task composition in multi-agent bioinformatics integration systems.
    Karasavvas KA; Baldock R; Burger A
    Bioinformatics; 2005 Jul; 21(14):3155-63. PubMed ID: 15890745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From the desktop to the grid: scalable bioinformatics via workflow conversion.
    de la Garza L; Veit J; Szolek A; Röttig M; Aiche S; Gesing S; Reinert K; Kohlbacher O
    BMC Bioinformatics; 2016 Mar; 17():127. PubMed ID: 26968893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing reproducible bioinformatics analysis workflows for heterogeneous computing environments to support African genomics.
    Baichoo S; Souilmi Y; Panji S; Botha G; Meintjes A; Hazelhurst S; Bendou H; Beste E; Mpangase PT; Souiai O; Alghali M; Yi L; O'Connor BD; Crusoe M; Armstrong D; Aron S; Joubert F; Ahmed AE; Mbiyavanga M; Heusden PV; Magosi LE; Zermeno J; Mainzer LS; Fadlelmola FM; Jongeneel CV; Mulder N
    BMC Bioinformatics; 2018 Nov; 19(1):457. PubMed ID: 30486782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. myGrid: personalised bioinformatics on the information grid.
    Stevens RD; Robinson AJ; Goble CA
    Bioinformatics; 2003; 19 Suppl 1():i302-4. PubMed ID: 12855473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of the BioExtract Server: a distributed, Web-based system for genomic analysis.
    Lushbough CM; Brendel VP
    Adv Exp Med Biol; 2010; 680():361-9. PubMed ID: 20865520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitating the use of large-scale biological data and tools in the era of translational bioinformatics.
    Kouskoumvekaki I; Shublaq N; Brunak S
    Brief Bioinform; 2014 Nov; 15(6):942-52. PubMed ID: 23908249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.