These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 18048293)

  • 1. Review. Do hormonal control systems produce evolutionary inertia?
    Adkins-Regan E
    Philos Trans R Soc Lond B Biol Sci; 2008 May; 363(1497):1599-609. PubMed ID: 18048293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The switch of secondary sex determination in protandrous black porgy, Acanthopagrus schlegeli.
    Wu GC; Chang CF
    Fish Physiol Biochem; 2013 Feb; 39(1):33-8. PubMed ID: 22411079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional differences in the hypothalamic-pituitary-gonadal axis are associated with alternative reproductive tactics based on an inversion polymorphism.
    Loveland JL; Giraldo-Deck LM; Lank DB; Goymann W; Gahr M; Küpper C
    Horm Behav; 2021 Jan; 127():104877. PubMed ID: 33186586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys.
    Sower SA; Freamat M; Kavanaugh SI
    Gen Comp Endocrinol; 2009 Mar; 161(1):20-9. PubMed ID: 19084529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity.
    Oyola MG; Handa RJ
    Stress; 2017 Sep; 20(5):476-494. PubMed ID: 28859530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex differences in brain epigenetics.
    Menger Y; Bettscheider M; Murgatroyd C; Spengler D
    Epigenomics; 2010 Dec; 2(6):807-21. PubMed ID: 22122084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the regulatory mechanisms for the hypothalamic-pituitary-gonadal axis in vertebrates-hypothesis from a comparative view.
    Kanda S
    Gen Comp Endocrinol; 2019 Dec; 284():113075. PubMed ID: 30500374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hormones, life-history, and phenotypic variation: opportunities in evolutionary avian endocrinology.
    Williams TD
    Gen Comp Endocrinol; 2012 May; 176(3):286-95. PubMed ID: 22154573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sexual maturation and differentiation: the role of the gonadal steroids.
    McEwen BS
    Prog Brain Res; 1978; 48():291-308. PubMed ID: 85313
    [No Abstract]   [Full Text] [Related]  

  • 10. Hormonal organization and activation: evolutionary implications and questions.
    Adkins-Regan E
    Gen Comp Endocrinol; 2012 May; 176(3):279-85. PubMed ID: 22248442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones.
    Duarte-Guterman P; Navarro-Martín L; Trudeau VL
    Gen Comp Endocrinol; 2014 Jul; 203():69-85. PubMed ID: 24685768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the adipocyte-derived hormone leptin in reproductive control.
    Garcia-Galiano D; Allen SJ; Elias CF
    Horm Mol Biol Clin Investig; 2014 Sep; 19(3):141-9. PubMed ID: 25390022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sexual differentiation of avian brain and behavior: current views on gonadal hormone-dependent and independent mechanisms.
    Schlinger BA
    Annu Rev Physiol; 1998; 60():407-29. PubMed ID: 9558471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do sex differences in the brain explain sex differences in the hormonal induction of reproductive behavior? What 25 years of research on the Japanese quail tells us.
    Balthazart J; Tlemçani O; Ball GF
    Horm Behav; 1996 Dec; 30(4):627-61. PubMed ID: 9047287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing effects of environmental chemicals on neuroendocrine systems: potential mechanisms and functional outcomes.
    Ottinger MA; Carro T; Bohannon M; Baltos L; Marcell AM; McKernan M; Dean KM; Lavoie E; Abdelnabi M
    Gen Comp Endocrinol; 2013 Sep; 190():194-202. PubMed ID: 23773971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications.
    Dufour S; Quérat B; Tostivint H; Pasqualini C; Vaudry H; Rousseau K
    Physiol Rev; 2020 Apr; 100(2):869-943. PubMed ID: 31625459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex and stress steroids in adolescence: Gonadal regulation of the hypothalamic-pituitary-adrenal axis in the rat.
    Green MR; McCormick CM
    Gen Comp Endocrinol; 2016 Aug; 234():110-6. PubMed ID: 26851306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annual variation in the reproductive hormone and behavior rhythm in a population of the Asian short-toed lark: Can spring temperature influence activation of the HPG axis of wild birds?
    Zhang S; Xu X; Wang W; Zhao L; Gao L; Yang W
    Horm Behav; 2017 Sep; 95():76-84. PubMed ID: 28803937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy balance and reproduction.
    Schneider JE
    Physiol Behav; 2004 Apr; 81(2):289-317. PubMed ID: 15159173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The immunomodulatory role of the hypothalamus-pituitary-gonad axis: Proximate mechanism for reproduction-immune trade offs?
    Segner H; Verburg-van Kemenade BML; Chadzinska M
    Dev Comp Immunol; 2017 Jan; 66():43-60. PubMed ID: 27404794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.