These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 18048310)
1. Proteomic data mining using predicted peptide chromatographic retention times. Tripet B; Renuka Jayadev M; Blow D; Nguyen C; Hodges R; Cios K Int J Bioinform Res Appl; 2007; 3(4):431-45. PubMed ID: 18048310 [TBL] [Abstract][Full Text] [Related]
2. Predicting peptide retention times for proteomics. Krokhin OV; Spicer V Curr Protoc Bioinformatics; 2010 Sep; Chapter 13():Unit 13.14. PubMed ID: 20836075 [TBL] [Abstract][Full Text] [Related]
3. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics. Baczek T; Kaliszan R Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394 [TBL] [Abstract][Full Text] [Related]
4. [Prediction of peptide retention time in reversed-phase liquid chromatography and its application in protein identification]. Liu C; Wang H; Fu Y; Yuan Z; Chi H; Wang L; Sun R; He S Se Pu; 2010 Jun; 28(6):529-34. PubMed ID: 20873570 [TBL] [Abstract][Full Text] [Related]
5. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins. Martosella J; Zolotarjova N; Liu H; Nicol G; Boyes BE J Proteome Res; 2005; 4(5):1522-37. PubMed ID: 16212403 [TBL] [Abstract][Full Text] [Related]
6. Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome using artificial neural networks. Shinoda K; Sugimoto M; Yachie N; Sugiyama N; Masuda T; Robert M; Soga T; Tomita M J Proteome Res; 2006 Dec; 5(12):3312-7. PubMed ID: 17137332 [TBL] [Abstract][Full Text] [Related]
7. Quantification of uncertainty of peptide retention time predictions from a sequence-based model in LC-MS/MS proteomics experiments. Yanofsky CM; Kearney RE; Lesimple S; Bergeron JJ; Boismenu D; Carrillo B; Bell AW Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1221-4. PubMed ID: 18002183 [TBL] [Abstract][Full Text] [Related]
8. Improving peptide identification in proteome analysis by a two-dimensional retention time filtering approach. Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O J Proteome Res; 2009 Aug; 8(8):4109-15. PubMed ID: 19492844 [TBL] [Abstract][Full Text] [Related]
9. Improving mass and liquid chromatography based identification of proteins using bayesian scoring. Chen SS; Deutsch EW; Yi EC; Li XJ; Goodlett DR; Aebersold R J Proteome Res; 2005; 4(6):2174-84. PubMed ID: 16335964 [TBL] [Abstract][Full Text] [Related]
10. Unifying expression scale for peptide hydrophobicity in proteomic reversed phase high-pressure liquid chromatography experiments. Grigoryan M; Shamshurin D; Spicer V; Krokhin OV Anal Chem; 2013 Nov; 85(22):10878-86. PubMed ID: 24127634 [TBL] [Abstract][Full Text] [Related]
11. Two-dimensional reversed-phase x ion-pair reversed-phase HPLC: an alternative approach to high-resolution peptide separation for shotgun proteome analysis. Delmotte N; Lasaosa M; Tholey A; Heinzle E; Huber CG J Proteome Res; 2007 Nov; 6(11):4363-73. PubMed ID: 17924683 [TBL] [Abstract][Full Text] [Related]
12. Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics. Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O BMC Bioinformatics; 2007 Nov; 8():468. PubMed ID: 18053132 [TBL] [Abstract][Full Text] [Related]
13. On the utility of isotopic fine structure mass spectrometry in protein identification. Miladinović SM; Kozhinov AN; Gorshkov MV; Tsybin YO Anal Chem; 2012 May; 84(9):4042-51. PubMed ID: 22468966 [TBL] [Abstract][Full Text] [Related]
14. Rapid identification of comigrating gel-isolated proteins by ion trap-mass spectrometry. Arnott D; Henzel WJ; Stults JT Electrophoresis; 1998 May; 19(6):968-80. PubMed ID: 9638943 [TBL] [Abstract][Full Text] [Related]
15. 3D HPLC-MS with Reversed-Phase Separation Functionality in All Three Dimensions for Large-Scale Bottom-Up Proteomics and Peptide Retention Data Collection. Spicer V; Ezzati P; Neustaeter H; Beavis RC; Wilkins JA; Krokhin OV Anal Chem; 2016 Mar; 88(5):2847-55. PubMed ID: 26849966 [TBL] [Abstract][Full Text] [Related]
16. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983 [TBL] [Abstract][Full Text] [Related]
17. High-speed data reduction, feature detection, and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Hoopmann MR; Finney GL; MacCoss MJ Anal Chem; 2007 Aug; 79(15):5620-32. PubMed ID: 17580982 [TBL] [Abstract][Full Text] [Related]
18. Application of 2-D free-flow electrophoresis/RP-HPLC for proteomic analysis of human plasma depleted of multi high-abundance proteins. Moritz RL; Clippingdale AB; Kapp EA; Eddes JS; Ji H; Gilbert S; Connolly LM; Simpson RJ Proteomics; 2005 Aug; 5(13):3402-13. PubMed ID: 16052629 [TBL] [Abstract][Full Text] [Related]
19. Predictive chromatography of peptides and proteins as a complementary tool for proteomics. Tarasova IA; Masselon CD; Gorshkov AV; Gorshkov MV Analyst; 2016 Aug; 141(16):4816-4832. PubMed ID: 27419248 [TBL] [Abstract][Full Text] [Related]
20. A Bayesian approach to peptide identification using accurate mass and time tags from LC-FTICR-MS proteomics experiments. Yanofsky CM; Kearney RE; Lesimple S; Bergeron JJ; Boismenu D; Carrillo B; Bell AW Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3775-8. PubMed ID: 19163533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]