These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18048317)

  • 1. A study of the repetitive structure and distribution of short motifs in human genomic sequences.
    Singh A; Feschotte C; Stojanovic N
    Int J Bioinform Res Appl; 2007; 3(4):523-35. PubMed ID: 18048317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio identification of putative human transcription factor binding sites by comparative genomics.
    Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M
    BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families.
    Austin RS; Provart NJ; Cutler SR
    BMC Genomics; 2007 Jun; 8():191. PubMed ID: 17594486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GREAM: A Web Server to Short-List Potentially Important Genomic Repeat Elements Based on Over-/Under-Representation in Specific Chromosomal Locations, Such as the Gene Neighborhoods, within or across 17 Mammalian Species.
    Chandrashekar DS; Dey P; Acharya KK
    PLoS One; 2015; 10(7):e0133647. PubMed ID: 26208093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete Sequence Construction of the Highly Repetitive Ribosomal RNA Gene Repeats in Eukaryotes Using Whole Genome Sequence Data.
    Agrawal S; Ganley AR
    Methods Mol Biol; 2016; 1455():161-81. PubMed ID: 27576718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some statistical properties of regulatory DNA sequences, and their use in predicting regulatory regions in the Drosophila genome: the fluffy-tail test.
    Abnizova I; te Boekhorst R; Walter K; Gilks WR
    BMC Bioinformatics; 2005 Apr; 6():109. PubMed ID: 15857505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-random genomic divergence in repetitive sequences of human and chimpanzee in genes of different functional categories.
    Shankar R; Chaurasia A; Ghosh B; Chekmenev D; Cheremushkin E; Kel A; Mukerji M
    Mol Genet Genomics; 2007 Apr; 277(4):441-55. PubMed ID: 17375324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive DNA in eukaryotic genomes.
    Biscotti MA; Olmo E; Heslop-Harrison JS
    Chromosome Res; 2015 Sep; 23(3):415-20. PubMed ID: 26514350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic analysis of genomic organization and structure of long non-coding RNAs in the human genome.
    Sun J; Zhou M; Mao ZT; Hao DP; Wang ZZ; Li CX
    FEBS Lett; 2013 Apr; 587(7):976-82. PubMed ID: 23454638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W; Meyer CA; Liu XS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RepeatAround: a software tool for finding and visualizing repeats in circular genomes and its application to a human mtDNA database.
    Goios A; Meirinhos J; Rocha R; Lopes R; Amorim A; Pereira L
    Mitochondrion; 2006 Aug; 6(4):218-24. PubMed ID: 16854633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and annotation of repetitive sequences in fungal genomes.
    Dhillon B; Goodwin SB
    Methods Mol Biol; 2011; 722():33-50. PubMed ID: 21590411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel porcine repetitive elements.
    Wiedmann RT; Nonneman DJ; Keele JW
    BMC Genomics; 2006 Dec; 7():304. PubMed ID: 17140439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and distribution of repetitive elements in association with genes in the human genome.
    Liang KC; Tseng JT; Tsai SJ; Sun HS
    Comput Biol Chem; 2015 Aug; 57():29-38. PubMed ID: 25748288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.
    Tong H; Schliekelman P; Mrázek J
    BMC Genomics; 2017 Jan; 18(1):27. PubMed ID: 28056763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, clustering and functional insights of repeats configurations in the upstream promoter region of the human coding genes.
    Tobar-Tosse F; Veléz PE; Ocampo-Toro E; Moreno PA
    BMC Genomics; 2018 Dec; 19(Suppl 8):862. PubMed ID: 30537933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale genomic correlations in Arabidopsis thaliana relate to chromosomal structure.
    Kendal WS; Suomela BP
    BMC Genomics; 2005 Jun; 6():82. PubMed ID: 15932642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: application to Arabidopsis.
    Shamloo-Dashtpagerdi R; Razi H; Aliakbari M; Lindlöf A; Ebrahimi M; Ebrahimie E
    J Theor Biol; 2015 Jan; 364():364-76. PubMed ID: 25303887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic and evolutionary insights into genes encoding proteins with single amino acid repeats.
    Siwach P; Pophaly SD; Ganesh S
    Mol Biol Evol; 2006 Jul; 23(7):1357-69. PubMed ID: 16618963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human repetitive sequence densities are mostly negatively correlated with R/Y-based nucleosome-positioning motifs and positively correlated with W/S-based motifs.
    Li W; Sosa D; Jose MV
    Genomics; 2013 Feb; 101(2):125-33. PubMed ID: 23137775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.