BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18048940)

  • 21. Copper Efflux System Required in Murine Lung Infection by Haemophilus influenzae Composed of a Canonical ATPase Gene and Tandem Chaperone Gene Copies.
    Wong SM; Gawronski J; Akerley BJ
    Infect Immun; 2023 May; 91(5):e0009123. PubMed ID: 37014212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Staphylococcus aureus CsoR regulates both chromosomal and plasmid-encoded copper resistance mechanisms.
    Baker J; Sengupta M; Jayaswal RK; Morrissey JA
    Environ Microbiol; 2011 Sep; 13(9):2495-507. PubMed ID: 21812885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus.
    Grossoehme N; Kehl-Fie TE; Ma Z; Adams KW; Cowart DM; Scott RA; Skaar EP; Giedroc DP
    J Biol Chem; 2011 Apr; 286(15):13522-31. PubMed ID: 21339296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans.
    Vats N; Lee SF
    Microbiology (Reading); 2001 Mar; 147(Pt 3):653-662. PubMed ID: 11238972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin.
    Williamson NR; Simonsen HT; Harris AK; Leeper FJ; Salmond GP
    J Ind Microbiol Biotechnol; 2006 Feb; 33(2):151-8. PubMed ID: 16187093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
    Cobine PA; George GN; Jones CE; Wickramasinghe WA; Solioz M; Dameron CT
    Biochemistry; 2002 May; 41(18):5822-9. PubMed ID: 11980486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8.
    Sakamoto K; Agari Y; Agari K; Kuramitsu S; Shinkai A
    Microbiology (Reading); 2010 Jul; 156(Pt 7):1993-2005. PubMed ID: 20395270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR.
    Petersen C; Møller LB
    Gene; 2000 Dec; 261(2):289-98. PubMed ID: 11167016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation and translational frameshifting in Escherichia coli.
    Drees SL; Klinkert B; Helling S; Beyer DF; Marcus K; Narberhaus F; Lübben M
    Mol Microbiol; 2017 Nov; 106(4):635-645. PubMed ID: 28925527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhizobium tropici CIAT 899 copA gene plays a fundamental role in copper tolerance in both free life and symbiosis with Phaseolus vulgaris.
    Elizalde-Díaz JP; Hernández-Lucas I; Medina-Aparicio L; Dávalos A; Leija A; Alvarado-Affantranger X; García-García JD; Hernández G; Garcia-de Los Santos A
    Microbiology (Reading); 2019 Jun; 165(6):651-661. PubMed ID: 31081746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of SirABC in iron-siderophore import in Staphylococcus aureus.
    Dale SE; Sebulsky MT; Heinrichs DE
    J Bacteriol; 2004 Dec; 186(24):8356-62. PubMed ID: 15576785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis.
    Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L
    Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states.
    Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ
    J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae.
    Magnani D; Solioz M
    Biometals; 2005 Aug; 18(4):407-12. PubMed ID: 16158233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper homeostasis in Enterococcus hirae.
    Solioz M; Stoyanov JV
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):183-95. PubMed ID: 12829267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMR structure and metal interactions of the CopZ copper chaperone.
    Wimmer R; Herrmann T; Solioz M; Wüthrich K
    J Biol Chem; 1999 Aug; 274(32):22597-603. PubMed ID: 10428839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein.
    Taylor JM; Heinrichs DE
    Mol Microbiol; 2002 Mar; 43(6):1603-14. PubMed ID: 11952908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus.
    Xiong A; Singh VK; Cabrera G; Jayaswal RK
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():659-668. PubMed ID: 10746769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon.
    Gaballa A; Cao M; Helmann JD
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3413-3421. PubMed ID: 14663075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of copper content and specific activity of CotA laccase from Bacillus licheniformis by coexpression with CopZ copper chaperone in E. coli.
    Gunne M; Al-Sultani D; Urlacher VB
    J Biotechnol; 2013 Nov; 168(3):252-5. PubMed ID: 23827415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.