BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 18048977)

  • 1. The impact of increasing energy crop addition on process performance and residual methane potential in anaerobic digestion.
    Lindorfer H; Pérez López C; Resch C; Braun R; Kirchmayr R
    Water Sci Technol; 2007; 56(10):55-63. PubMed ID: 18048977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doubling the organic loading rate in the co-digestion of energy crops and manure--a full scale case study.
    Lindorfer H; Corcoba A; Vasilieva V; Braun R; Kirchmayr R
    Bioresour Technol; 2008 Mar; 99(5):1148-56. PubMed ID: 17449245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of energy crop substrates on the mass-flow analysis and the residual methane potential at a rural anaerobic digestion plant.
    Resch C; Braun R; Kirchmayr R
    Water Sci Technol; 2008; 57(1):73-81. PubMed ID: 18192743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants.
    Angelidaki I; Boe K; Ellegaard L
    Water Sci Technol; 2005; 52(1-2):189-94. PubMed ID: 16180427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of increasing organic loading rate in the co-digestion of energy crops and cow manure mix.
    Comino E; Rosso M; Riggio V
    Bioresour Technol; 2010 May; 101(9):3013-9. PubMed ID: 20053553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic digestion of the liquid fraction of dairy manure in pilot plant for biogas production: residual methane yield of digestate.
    Rico C; Rico JL; Tejero I; Muñoz N; Gómez B
    Waste Manag; 2011; 31(9-10):2167-73. PubMed ID: 21612905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-digestion of energy crops and the source-sorted organic fraction of municipal solid waste.
    Nordberg A; Edström M
    Water Sci Technol; 2005; 52(1-2):217-22. PubMed ID: 16180431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.
    Amon T; Amon B; Kryvoruchko V; Machmüller A; Hopfner-Sixt K; Bodiroza V; Hrbek R; Friedel J; Pötsch E; Wagentristl H; Schreiner M; Zollitsch W
    Bioresour Technol; 2007 Dec; 98(17):3204-12. PubMed ID: 16935493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of reactor configuration on biogas production from wheat straw hydrolysate.
    Kaparaju P; Serrano M; Angelidaki I
    Bioresour Technol; 2009 Dec; 100(24):6317-23. PubMed ID: 19647428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.
    Nges IA; Escobar F; Fu X; Björnsson L
    Waste Manag; 2012 Jan; 32(1):53-9. PubMed ID: 21975301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity.
    Wang G; Gavala HN; Skiadas IV; Ahring BK
    Waste Manag; 2009 Nov; 29(11):2830-5. PubMed ID: 19666217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substituting energy crops with organic wastes and agro-industrial residues for biogas production.
    Schievano A; D'Imporzano G; Adani F
    J Environ Manage; 2009 Jun; 90(8):2537-41. PubMed ID: 19254824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimisation of biogas production from manure through serial digestion: lab-scale and pilot-scale studies.
    Kaparaju P; Ellegaard L; Angelidaki I
    Bioresour Technol; 2009 Jan; 100(2):701-9. PubMed ID: 18757195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogas from energy crops--optimal pre-treatments and storage, co-digestion and energy balance in boreal conditions.
    Seppälä M; Paavola T; Lehtomäki A; Pakarinen O; Rintala J
    Water Sci Technol; 2008; 58(9):1857-63. PubMed ID: 19029729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesophilic anaerobic co-digestion of cow manure and biogas crops in full scale German biogas plants: a model for calculating the effect of hydraulic retention time and VS crop proportion in the mixture on methane yield from digester and from digestate storage at different temperatures.
    Linke B; Muha I; Wittum G; Plogsties V
    Bioresour Technol; 2013 Feb; 130():689-95. PubMed ID: 23334028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano.
    Alvarez R; Lidén G
    Waste Manag; 2008; 28(10):1933-40. PubMed ID: 18155895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The methane yield of digestate: effect of organic loading rate, hydraulic retention time, and plant feeding.
    Menardo S; Gioelli F; Balsari P
    Bioresour Technol; 2011 Feb; 102(3):2348-51. PubMed ID: 21071217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogas production from crop residues on a farm-scale level: is it economically feasible under conditions in Sweden?
    Svensson LM; Christensson K; Björnsson L
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):139-48. PubMed ID: 16172872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digestion of sand-laden manure slurry in an upflow anaerobic solids removal (UASR) digester.
    Karim K; Hoffmann R; Al-Dahhan MH
    Biodegradation; 2008 Feb; 19(1):21-6. PubMed ID: 17404696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogas production with horse dung in solid-phase digestion systems.
    Kusch S; Oechsner H; Jungbluth T
    Bioresour Technol; 2008 Mar; 99(5):1280-92. PubMed ID: 17383871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.