BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 1804959)

  • 1. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig.
    Sánchez D; Ribas J
    J Physiol; 1991; 440():167-87. PubMed ID: 1804959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro.
    Chandler SH; Hsaio CF; Inoue T; Goldberg LJ
    J Neurophysiol; 1994 Jan; 71(1):129-45. PubMed ID: 7908952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones.
    Johnston AR; MacLeod NK; Dutia MB
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):61-77. PubMed ID: 7531769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium- and calcium-dependent conductances of neurones in the zebra finch hyperstriatum ventrale pars caudale in vitro.
    Kubota M; Saito N
    J Physiol; 1991; 440():131-42. PubMed ID: 1804958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic basis of the differential neuronal activity of guinea-pig septal nucleus studied in vitro.
    Alvarez de Toledo G; López-Barneo J
    J Physiol; 1988 Feb; 396():399-415. PubMed ID: 2457690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker.
    Bal T; McCormick DA
    J Physiol; 1993 Aug; 468():669-91. PubMed ID: 8254530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones.
    Nedergaard S; Flatman JA; Engberg I
    J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons.
    Llinás RR; Alonso A
    J Neurophysiol; 1992 Oct; 68(4):1307-20. PubMed ID: 1279134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ionic basis of action potentials in petrosal ganglion cells of the cat.
    Gallego R
    J Physiol; 1983 Sep; 342():591-602. PubMed ID: 6631750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic basis for the electroresponsiveness of guinea-pig ventromedial hypothalamic neurones in vitro.
    Minami T; Oomura Y; Sugimori M
    J Physiol; 1986 Nov; 380():145-56. PubMed ID: 3612562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afterhyperpolarization mechanisms in cat sympathetic preganglionic neuron in vitro.
    Yoshimura M; Polosa C; Nishi S
    J Neurophysiol; 1986 Jun; 55(6):1234-46. PubMed ID: 3016208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro.
    Jahnsen H; Llinás R
    J Physiol; 1984 Apr; 349():227-47. PubMed ID: 6737293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells.
    Storm JF
    J Physiol; 1987 Apr; 385():733-59. PubMed ID: 2443676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response properties of motoneurones in a slice preparation of the turtle spinal cord.
    Hounsgaard J; Kiehn O; Mintz I
    J Physiol; 1988 Apr; 398():575-89. PubMed ID: 2455803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study.
    Jahnsen H; Llinás R
    J Physiol; 1984 Apr; 349():205-26. PubMed ID: 6737292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular study of calcium-related events in cat magnocellular neuroendocrine cells.
    Fagan M; Andrew RD
    J Physiol; 1991 Mar; 434():337-49. PubMed ID: 2023122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic response properties of bursting neurons in the nucleus principalis trigemini of the gerbil.
    Sandler VM; Puil E; Schwarz DW
    Neuroscience; 1998 Apr; 83(3):891-904. PubMed ID: 9483572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.