These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18049653)

  • 1. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator.
    Minoshima K; Kowalevicz AM; Hartl I; Ippen EP; Fujimoto JG
    Opt Lett; 2001 Oct; 26(19):1516-8. PubMed ID: 18049653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing.
    Minoshima K; Kowalevicz A; Ippen E; Fujimoto J
    Opt Express; 2002 Jul; 10(15):645-52. PubMed ID: 19451917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing.
    Yang W; Corbari C; Kazansky PG; Sakaguchi K; Carvalho IC
    Opt Express; 2008 Sep; 16(20):16215-26. PubMed ID: 18825261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy.
    Schaffer CB; Brodeur A; García JF; Mazur E
    Opt Lett; 2001 Jan; 26(2):93-5. PubMed ID: 18033517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses.
    Martinez-Vazquez R; Osellame R; Cerullo G; Ramponi R; Svelto O
    Opt Express; 2007 Oct; 15(20):12628-35. PubMed ID: 19550531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam.
    Liao Y; Qi J; Wang P; Chu W; Wang Z; Qiao L; Cheng Y
    Sci Rep; 2016 Jun; 6():28790. PubMed ID: 27346285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond direct-written integrated mode couplers.
    Riesen N; Gross S; Love JD; Withford MJ
    Opt Express; 2014 Dec; 22(24):29855-61. PubMed ID: 25606915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the refractive index profile of waveguides using defocusing microscopy.
    Lages E; Cardoso W; Almeida GFB; Siman L; Mesquita O; Mendonça CR; Agero U; Pádua S
    Appl Opt; 2018 Oct; 57(29):8699-8704. PubMed ID: 30461946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of ultrafast laser written low-loss waveguides in flexible As₂S₃ chalcogenide glass tape.
    Lapointe J; Ledemi Y; Loranger S; Iezzi VL; Soares de Lima Filho E; Parent F; Morency S; Messaddeq Y; Kashyap R
    Opt Lett; 2016 Jan; 41(2):203-6. PubMed ID: 26766674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass.
    Psaila ND; Thomson RR; Bookey HT; Kar AK; Chiodo N; Osellame R; Cerullo G; Brown G; Jha A; Shen S
    Opt Express; 2006 Oct; 14(22):10452-9. PubMed ID: 19529444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing.
    Wang P; Qi J; Liu Z; Liao Y; Chu W; Cheng Y
    Sci Rep; 2017 Jan; 7():41211. PubMed ID: 28112246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator.
    Kowalevicz AM; Sharma V; Ippen EP; Fujimoto JG; Minoshima K
    Opt Lett; 2005 May; 30(9):1060-2. PubMed ID: 15907003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm.
    Allsop T; Dubov M; Mezentsev V; Bennion I
    Appl Opt; 2010 Apr; 49(10):1938-50. PubMed ID: 20357880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-Induced Erasable and Re-Writable Waveguides within Silver Phosphate Glasses.
    Tsimvrakidis K; Konidakis I; Stratakis E
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.
    Nie W; Jia Y; Vázquez de Aldana JR; Chen F
    Sci Rep; 2016 Feb; 6():22310. PubMed ID: 26924255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanded-core waveguides written by femtosecond laser irradiation in bulk optical glasses.
    Liu X; Zhang W; Zhao W; Stoian R; Cheng G
    Opt Express; 2014 Nov; 22(23):28771-82. PubMed ID: 25402116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct femtosecond laser waveguide writing inside zinc phosphate glass.
    Fletcher LB; Witcher JJ; Troy N; Reis ST; Brow RK; Krol DM
    Opt Express; 2011 Apr; 19(9):7929-36. PubMed ID: 21643042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond laser induced thermophoretic writing of waveguides in silicate glass.
    Macias-Montero M; Muñoz F; Sotillo B; Del Hoyo J; Ariza R; Fernandez P; Siegel J; Solis J
    Sci Rep; 2021 Apr; 11(1):8390. PubMed ID: 33863947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass.
    Bérubé JP; Vallée R
    Opt Lett; 2016 Jul; 41(13):3074-7. PubMed ID: 27367105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.