These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18049709)

  • 1. Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements.
    Hansen H; Aichele T; Hettich C; Lodahl P; Lvovsky AI; Mlynek J; Schiller S
    Opt Lett; 2001 Nov; 26(21):1714-6. PubMed ID: 18049709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shot-noise limited homodyne detection for MHz quantum light characterisation in the 2 µm band.
    Biele J; Tasker JF; Silverstone JW; Matthews JCF
    Opt Express; 2022 Feb; 30(5):7716-7724. PubMed ID: 35299527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast time-domain balanced homodyne detection of light.
    Haderka O; Michálek V; Urbásek V; Jezek M
    Appl Opt; 2009 May; 48(15):2884-9. PubMed ID: 19458739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed entanglement measured by parametric amplifier assisted homodyne detection.
    Li J; Liu Y; Huo N; Cui L; Feng C; Ou ZY; Li X
    Opt Express; 2019 Oct; 27(21):30552-30562. PubMed ID: 31684300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz.
    Okubo R; Hirano M; Zhang Y; Hirano T
    Opt Lett; 2008 Jul; 33(13):1458-60. PubMed ID: 18594664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 500 MHz resonant photodetector for high-quantum-efficiency, low-noise homodyne measurement.
    Serikawa T; Furusawa A
    Rev Sci Instrum; 2018 Jun; 89(6):063120. PubMed ID: 29960558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase locking and homodyne detection of repetitive laser pulses.
    Wang Y; Yan S; Huo M; Li X; Su J; Shi S; Wang Z; Qiu Q
    Opt Express; 2020 Nov; 28(24):35588-35601. PubMed ID: 33379671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization-based truncated SU(1,1) interferometer based on four-wave mixing in Rb vapor.
    Prajapati N; Novikova I
    Opt Lett; 2019 Dec; 44(24):5921-5924. PubMed ID: 32628186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification.
    Wenger J; Tualle-Brouri R; Grangier P
    Opt Lett; 2004 Jun; 29(11):1267-9. PubMed ID: 15209267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum tomography of an electron.
    Jullien T; Roulleau P; Roche B; Cavanna A; Jin Y; Glattli DC
    Nature; 2014 Oct; 514(7524):603-7. PubMed ID: 25355360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a balanced detector with biased synchronous detection and application to near shot noise limited noise cancelling of supercontinuum pulse light.
    Seto K; Tsukada T; Okuda Y; Tokunaga E; Kobayashi T
    Rev Sci Instrum; 2014 Feb; 85(2):023702. PubMed ID: 24593366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lifting the bandwidth limit of optical homodyne measurement with broadband parametric amplification.
    Shaked Y; Michael Y; Vered RZ; Bello L; Rosenbluh M; Pe'er A
    Nat Commun; 2018 Feb; 9(1):609. PubMed ID: 29426909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum state reconstruction of the single-photon Fock state.
    Lvovsky AI; Hansen H; Aichele T; Benson O; Mlynek J; Schiller S
    Phys Rev Lett; 2001 Jul; 87(5):050402. PubMed ID: 11497753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes.
    Jin X; Su J; Zheng Y; Chen C; Wang W; Peng K
    Opt Express; 2015 Sep; 23(18):23859-66. PubMed ID: 26368479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of homodyne receiver bandwidth and signal modulation patterns on the continuous-variable quantum key distribution.
    Liu J; Cao Y; Wang P; Liu S; Lu Z; Wang X; Li Y
    Opt Express; 2022 Jul; 30(15):27912-27925. PubMed ID: 36236950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique.
    Eto Y; Koshio A; Ohshiro A; Sakurai J; Horie K; Hirano T; Sasaki M
    Opt Lett; 2011 Dec; 36(23):4653-5. PubMed ID: 22139273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring fluorescence into a nanofiber by observing field quadrature noise.
    Jalnapurkar S; Anderson P; Moiseev ES; Palittapongarnpim P; Narayanan A; Barclay PE; Lvovsky AI
    Opt Lett; 2019 Apr; 44(7):1678-1681. PubMed ID: 30933120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid-infrared homodyne balanced detector for quantum light characterization.
    Gabbrielli T; Cappelli F; Bruno N; Corrias N; Borri S; De Natale P; Zavatta A
    Opt Express; 2021 May; 29(10):14536-14547. PubMed ID: 33985175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near quantum-limited, single-shot coherent arbitrary optical waveform measurements.
    Fontaine NK; Scott RP; Heritage JP; Yoo SJ
    Opt Express; 2009 Jul; 17(15):12332-44. PubMed ID: 19654635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical homodyne tomography of information carrying laser beams.
    Wu J; Lam P; Gray M; Bachor H
    Opt Express; 1998 Aug; 3(4):154-61. PubMed ID: 19384356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.