These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 1804983)

  • 1. Mechanisms of inhibition in cat visual cortex.
    Berman NJ; Douglas RJ; Martin KA; Whitteridge D
    J Physiol; 1991; 440():697-722. PubMed ID: 1804983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intracellular analysis of the visual responses of neurones in cat visual cortex.
    Douglas RJ; Martin KA; Whitteridge D
    J Physiol; 1991; 440():659-96. PubMed ID: 1804981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo.
    Azouz R; Gray CM
    Eur J Neurosci; 2008 Oct; 28(7):1286-300. PubMed ID: 18973556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat.
    Connors BW; Malenka RC; Silva LR
    J Physiol; 1988 Dec; 406():443-68. PubMed ID: 2855437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual input evokes transient and strong shunting inhibition in visual cortical neurons.
    Borg-Graham LJ; Monier C; Frégnac Y
    Nature; 1998 May; 393(6683):369-73. PubMed ID: 9620800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional microcircuit for cat visual cortex.
    Douglas RJ; Martin KA
    J Physiol; 1991; 440():735-69. PubMed ID: 1666655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat.
    Bringuier V; Frégnac Y; Baranyi A; Debanne D; Shulz DE
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):751-74. PubMed ID: 9161989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex.
    Anderson JS; Carandini M; Ferster D
    J Neurophysiol; 2000 Aug; 84(2):909-26. PubMed ID: 10938316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning.
    Monier C; Chavane F; Baudot P; Graham LJ; Frégnac Y
    Neuron; 2003 Feb; 37(4):663-80. PubMed ID: 12597863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells.
    Bush PC; Sejnowski TJ
    J Neurophysiol; 1994 Jun; 71(6):2183-93. PubMed ID: 7523612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
    Jagadeesh B; Wheat HS; Kontsevich LL; Tyler CW; Ferster D
    J Neurophysiol; 1997 Nov; 78(5):2772-89. PubMed ID: 9356425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low frequency damped oscillations of cat visual cortical neurones.
    Ahmed B
    Neuroreport; 2000 Apr; 11(6):1243-7. PubMed ID: 10817600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording.
    Ferster D; Jagadeesh B
    J Neurosci; 1992 Apr; 12(4):1262-74. PubMed ID: 1556595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential and conductance changes underlying length tuning of cells in cat primary visual cortex.
    Anderson JS; Lampl I; Gillespie DC; Ferster D
    J Neurosci; 2001 Mar; 21(6):2104-12. PubMed ID: 11245694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole cell recording and conductance measurements in cat visual cortex in-vivo.
    Pei X; Volgushev M; Vidyasagar TR; Creutzfeldt OD
    Neuroreport; 1991 Aug; 2(8):485-8. PubMed ID: 1912484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex.
    Borg-Graham L; Monier C; Frégnac Y
    J Physiol Paris; 1996; 90(3-4):185-8. PubMed ID: 9116665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat.
    Sillito AM
    J Physiol; 1975 Sep; 250(2):305-29. PubMed ID: 1177144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurones in cat parastriate cortex sensitive to the direction of motion in three-dimensional space.
    Cynader M; Regan D
    J Physiol; 1978 Jan; 274():549-69. PubMed ID: 625008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro.
    McCormick DA; Prince DA
    J Physiol; 1986 Jun; 375():169-94. PubMed ID: 2879035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective responses of visual cortical cells do not depend on shunting inhibition.
    Douglas RJ; Martin KA; Whitteridge D
    Nature; 1988 Apr; 332(6165):642-4. PubMed ID: 3357519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.