These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 18049877)
1. Fabrication of biphasic calcium phosphates/polycaprolactone composites by melt infiltration process. Lee BT; Van Quang D; Youn MH; Song HY J Mater Sci Mater Med; 2008 May; 19(5):2223-9. PubMed ID: 18049877 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of bioglass infiltrated Al(2)O (3)-(m-ZrO (2)) composites. Song HY; Sarkar SK; Kim MS; Min YK; Mo YH; Lee BT J Mater Sci Mater Med; 2009 Jan; 20(1):265-9. PubMed ID: 18763022 [TBL] [Abstract][Full Text] [Related]
3. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
4. The effect of water in inorganic microsponges of calcium phosphates on the porosity and permeability of composites made with polymethylmethacrylate. Beruto DT; Botter R; Fini M Biomaterials; 2002 Jun; 23(12):2509-17. PubMed ID: 12033598 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of novel poly(ε-caprolactone)/biphasic calcium phosphate hybrid composite microspheres. Bao TQ; Franco RA; Lee BT J Biomed Mater Res B Appl Biomater; 2011 Aug; 98(2):272-9. PubMed ID: 21732529 [TBL] [Abstract][Full Text] [Related]
6. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related]
7. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes. Badr-Mohammadi MR; Hesaraki S; Zamanian A J Mater Sci Mater Med; 2014 Jan; 25(1):185-97. PubMed ID: 24101184 [TBL] [Abstract][Full Text] [Related]
8. Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles. Sa Y; Yang F; Leeuwenburgh SC; Wolke JG; Ye G; de Wijn JR; Jansen JA; Wang Y J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):548-55. PubMed ID: 24953849 [TBL] [Abstract][Full Text] [Related]
9. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation. Flauder S; Sajzew R; Müller FA ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730 [TBL] [Abstract][Full Text] [Related]
10. Rheological evaluations and in vitro studies of injectable bioactive glass-polycaprolactone-sodium alginate composites. Borhan S; Hesaraki S; Behnamghader AA; Ghasemi E J Mater Sci Mater Med; 2016 Sep; 27(9):137. PubMed ID: 27432416 [TBL] [Abstract][Full Text] [Related]
11. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics. Lin K; Chang J; Shen R Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383 [TBL] [Abstract][Full Text] [Related]
12. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method. Lu L; Zhang Q; Wootton DM; Chiou R; Li D; Lu B; Lelkes PI; Zhou J J Appl Biomater Funct Mater; 2014 Dec; 12(3):145-54. PubMed ID: 24425377 [TBL] [Abstract][Full Text] [Related]
13. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415 [TBL] [Abstract][Full Text] [Related]
14. Use of alpha-tricalcium phosphate (TCP) as powders and as an aqueous dispersion to modify processing, microstructure, and mechanical properties of polymethylmethacrylate (PMMA) bone cements and to produce bone-substitute compounds. Beruto DT; Mezzasalma SA; Capurro M; Botter R; Cirillo P J Biomed Mater Res; 2000 Mar; 49(4):498-505. PubMed ID: 10602083 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications. Aslan N; Aksakal B; Findik F J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138 [TBL] [Abstract][Full Text] [Related]
16. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Kim HW; Knowles JC; Kim HE Biomaterials; 2004; 25(7-8):1279-87. PubMed ID: 14643602 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. Ribeiro CC; Barrias CC; Barbosa MA J Mater Sci Mater Med; 2006 May; 17(5):455-63. PubMed ID: 16688586 [TBL] [Abstract][Full Text] [Related]
18. In vivo evaluation of interactions between biphasic calcium phosphate (BCP)-niobium pentoxide (Nb Kiyochi Junior HJ; Candido AG; Bonadio TGM; da Cruz JA; Baesso ML; Weinand WR; Hernandes L J Mater Sci Mater Med; 2020 Jul; 31(8):71. PubMed ID: 32712717 [TBL] [Abstract][Full Text] [Related]
19. Sintering and the mechanical properties of the tricalcium phosphate-titania composites. Ayadi I; Ben Ayed F J Mech Behav Biomed Mater; 2015 Sep; 49():129-40. PubMed ID: 26005844 [TBL] [Abstract][Full Text] [Related]
20. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]