These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Sensory substitution for balance control using a vestibular-to-tactile device. Diot B; Halavackova P; Demongeot J; Vuillerme N Multisens Res; 2014; 27(5-6):313-36. PubMed ID: 25693299 [TBL] [Abstract][Full Text] [Related]
4. Clinical impact of gait training enhanced with visual kinematic biofeedback: Patients with Parkinson's disease and patients stable post stroke. Byl N; Zhang W; Coo S; Tomizuka M Neuropsychologia; 2015 Dec; 79(Pt B):332-43. PubMed ID: 25912760 [TBL] [Abstract][Full Text] [Related]
5. A multimodal training with visual biofeedback in subacute stroke survivors: a randomized controlled trial. Ambrosini E; Peri E; Nava C; Longoni L; Monticone M; Pedrocchi A; Ferriero G; Ferrante S Eur J Phys Rehabil Med; 2020 Feb; 56(1):24-33. PubMed ID: 31556542 [TBL] [Abstract][Full Text] [Related]
6. Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients. Hsu HY; Lin CF; Su FC; Kuo HT; Chiu HY; Kuo LC J Neuroeng Rehabil; 2012 May; 9():26. PubMed ID: 22571177 [TBL] [Abstract][Full Text] [Related]
7. Wearable Sensor-Based Biofeedback Training for Balance and Gait in Parkinson Disease: A Pilot Randomized Controlled Trial. Carpinella I; Cattaneo D; Bonora G; Bowman T; Martina L; Montesano A; Ferrarin M Arch Phys Med Rehabil; 2017 Apr; 98(4):622-630.e3. PubMed ID: 27965005 [TBL] [Abstract][Full Text] [Related]
8. The balance control of bilateral peripheral vestibular loss subjects and its improvement with auditory prosthetic feedback. Hegeman J; Honegger F; Kupper M; Allum JH J Vestib Res; 2005; 15(2):109-17. PubMed ID: 15951624 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of visual versus auditory biofeedback training for voluntary postural sway. Hasegawa N; Takeda K; Mancini M; King LA; Horak FB; Asaka T PLoS One; 2020; 15(12):e0244583. PubMed ID: 33370408 [TBL] [Abstract][Full Text] [Related]
10. Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation. Claret CR; Herget GW; Kouba L; Wiest D; Adler J; von Tscharner V; Stieglitz T; Pasluosta C J Neuroeng Rehabil; 2019 Sep; 16(1):115. PubMed ID: 31521190 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Balance Training Using Visual Feedback on Balance and Walking Ability in Subacute Stroke Patients: A Single-Blinded Randomized Controlled Pilot Trial. Noh HJ; Lee SH; Bang DH J Stroke Cerebrovasc Dis; 2019 Apr; 28(4):994-1000. PubMed ID: 30612892 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the Immediate Effects of Audio, Visual, or Audiovisual Gait Biofeedback on Propulsive Force Generation in Able-Bodied and Post-stroke Individuals. Liu J; Kim HB; Wolf SL; Kesar TM Appl Psychophysiol Biofeedback; 2020 Sep; 45(3):211-220. PubMed ID: 32347399 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of sensory tongue stimulation combined with task-specific therapy in people with spinal cord injury: a case study. Chisholm AE; Malik RN; Blouin JS; Borisoff J; Forwell S; Lam T J Neuroeng Rehabil; 2014 Jun; 11():96. PubMed ID: 24906679 [TBL] [Abstract][Full Text] [Related]
14. Assessment and rehabilitation of central sensory impairments for balance in mTBI using auditory biofeedback: a randomized clinical trial. Fino PC; Peterka RJ; Hullar TE; Murchison C; Horak FB; Chesnutt JC; King LA BMC Neurol; 2017 Feb; 17(1):41. PubMed ID: 28231824 [TBL] [Abstract][Full Text] [Related]
15. Immediate therapeutic effect of interferential current therapy on spasticity, balance, and gait function in chronic stroke patients: a randomized control trial. Suh HR; Han HC; Cho HY Clin Rehabil; 2014 Sep; 28(9):885-91. PubMed ID: 24607801 [TBL] [Abstract][Full Text] [Related]
16. The effect of a haptic biofeedback system on postural control in patients with stroke: An experimental pilot study. Yasuda K; Kaibuki N; Harashima H; Iwata H Somatosens Mot Res; 2017 Jun; 34(2):65-71. PubMed ID: 28372470 [TBL] [Abstract][Full Text] [Related]
17. Transfemoral amputee recovery strategies following trips to their sound and prosthesis sides throughout swing phase. Shirota C; Simon AM; Kuiken TA J Neuroeng Rehabil; 2015 Sep; 12():79. PubMed ID: 26353775 [TBL] [Abstract][Full Text] [Related]
18. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review. Ma CZ; Wong DW; Lam WK; Wan AH; Lee WC Sensors (Basel); 2016 Mar; 16(4):434. PubMed ID: 27023558 [TBL] [Abstract][Full Text] [Related]
19. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study. Tamburella F; Scivoletto G; Molinari M Eur J Phys Rehabil Med; 2013 Jun; 49(3):353-64. PubMed ID: 23486301 [TBL] [Abstract][Full Text] [Related]
20. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training. Hasegawa N; Takeda K; Sakuma M; Mani H; Maejima H; Asaka T Gait Posture; 2017 Oct; 58():188-193. PubMed ID: 28800501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]