These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18050342)

  • 41. The in vivo effects of unloading and compression on T1-Gd (dGEMRIC) relaxation times in healthy articular knee cartilage at 3.0 Tesla.
    Mayerhoefer ME; Welsch GH; Mamisch TC; Kainberger F; Weber M; Nemec S; Friedrich KM; Dirisamer A; Trattnig S
    Eur Radiol; 2010 Feb; 20(2):443-9. PubMed ID: 19727756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Noninvasive high resolution mechanical strain maps of the spine intervertebral disc using nonrigid registration of magnetic resonance images.
    Reiter DA; Fathallah FA; Farouki RT; Walton JH
    J Biomech; 2012 May; 45(8):1534-9. PubMed ID: 22503578
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Comparison between pig lumbar zypapophyseal joint cartilage acquired from multiple magnetic resonance image sequences and gross specimens].
    Liao H; Yu W; Wang W; Liao Y
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2010 Oct; 35(10):1064-72. PubMed ID: 21051831
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of the variation of loading frequency on surface failure of bovine articular cartilage.
    Sadeghi H; Shepherd DET; Espino DM
    Osteoarthritis Cartilage; 2015 Dec; 23(12):2252-2258. PubMed ID: 26074363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Change in knee cartilage T2 in response to mechanical loading.
    Nishii T; Kuroda K; Matsuoka Y; Sahara T; Yoshikawa H
    J Magn Reson Imaging; 2008 Jul; 28(1):175-80. PubMed ID: 18581338
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Articular cartilage compression: how microstructural response influences pore pressure in relation to matrix health.
    Fick JM; Thambyah A; Broom ND
    Connect Tissue Res; 2010 Apr; 51(2):132-49. PubMed ID: 20001847
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fibronectin metabolism of cartilage explants in response to the frequency of intermittent loading.
    Wolf A; Raiss RX; Steinmeyer J
    J Orthop Res; 2003 Nov; 21(6):1081-9. PubMed ID: 14554222
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of lipid-extraction method on the stiffness of articular cartilage.
    Gudimetla P; Crawford R; Oloyede A
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):924-31. PubMed ID: 17689159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of damage in the articular surface on the cartilage response to injurious compression in vitro.
    Morel V; Berutto C; Quinn TM
    J Biomech; 2006; 39(5):924-30. PubMed ID: 16488230
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visco-elastic properties of cartilage tissue regenerated with fibroin sponge.
    Morita Y; Tomita N; Aoki H; Wakitani S; Tamada Y; Suguro T; Ikeuchi K
    Biomed Mater Eng; 2002; 12(3):291-8. PubMed ID: 12446944
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How the structural integrity of the matrix can influence the microstructural response of articular cartilage to compression.
    Fick JM
    Connect Tissue Res; 2013; 54(2):83-93. PubMed ID: 23126382
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone.
    Owen JR; Wayne JS
    Biomech Model Mechanobiol; 2011 Jul; 10(4):461-71. PubMed ID: 20700624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Weight-bearing MRI of patellofemoral joint cartilage contact area.
    Gold GE; Besier TF; Draper CE; Asakawa DS; Delp SL; Beaupre GS
    J Magn Reson Imaging; 2004 Sep; 20(3):526-30. PubMed ID: 15332263
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo cartilage deformation after different types of activity and its dependence on physical training status.
    Eckstein F; Lemberger B; Gratzke C; Hudelmaier M; Glaser C; Englmeier KH; Reiser M
    Ann Rheum Dis; 2005 Feb; 64(2):291-5. PubMed ID: 15647438
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in articular cartilage mechanics with meniscectomy: A novel image-based modeling approach and comparison to patterns of OA.
    Haemer JM; Song Y; Carter DR; Giori NJ
    J Biomech; 2011 Aug; 44(12):2307-12. PubMed ID: 21741046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Biomechanical properties (compressive strength and compressive pressure at break) of hyaline cartilage under axial load].
    Spahn G; Wittig R
    Zentralbl Chir; 2003 Jan; 128(1):78-82. PubMed ID: 12594619
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of 3T MRI and an unspoiled 3D fast gradient echo sequence for porcine knee cartilage volumetry: preliminary findings.
    Cromer MS; Foster SL; Bourne RM; Fransen M; Fulton R; Wang SC
    J Magn Reson Imaging; 2013 Jul; 38(1):245-50. PubMed ID: 23124834
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Further insight into the depth-dependent microstructural response of cartilage to compression using a channel indentation technique.
    Thambyah A; Broom ND
    Comput Math Methods Med; 2013; 2013():358192. PubMed ID: 24023589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sensitivity of multi-parametric MRI to the compressive state of the isolated intervertebral discs.
    Manac'h YG; Périé D; Gilbert G; Beaudoin G
    Magn Reson Imaging; 2013 Jan; 31(1):36-43. PubMed ID: 22902468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.