These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 18050668)

  • 1. Development of a quantitative evaluation system for motor control using wrist movements--an analysis of movement disorders in patients with cerebellar diseases.
    Lee J; Kagamihara Y; Kakei S
    Rinsho Byori; 2007 Oct; 55(10):912-21. PubMed ID: 18050668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative evaluation of movement disorders in neurological diseases based on EMG signals.
    Lee J; Kagamihara Y; Kakei S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():181-4. PubMed ID: 19162623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A new system for the quantitative evaluation of motor commands for neurorehabilitation].
    Kakei S; Lee JH; Kagamihara Y
    Brain Nerve; 2010 Feb; 62(2):151-63. PubMed ID: 20192035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Method for Functional Evaluation of Motor Commands in Patients with Cerebellar Ataxia.
    Lee J; Kagamihara Y; Kakei S
    PLoS One; 2015; 10(7):e0132983. PubMed ID: 26186225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Computerized method for arm movement assessment in Parkinson's disease and cerebellar syndrome patients].
    Dordević O; Popović MB; Kostić V
    Srp Arh Celok Lek; 2005; 133(1-2):14-20. PubMed ID: 16053170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of silent cerebellar lesions by increasing the inertial load of the moving hand.
    Manto M; Godaux E; Jacquy J
    Ann Neurol; 1995 Mar; 37(3):344-50. PubMed ID: 7695233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of cerebellar ataxia based on pathological patterns of the muscle activities.
    Lee J; Kagamihara Y; Kakei S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():902-5. PubMed ID: 24109834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal control of redundant muscles in step-tracking wrist movements.
    Haruno M; Wolpert DM
    J Neurophysiol; 2005 Dec; 94(6):4244-55. PubMed ID: 16079196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional role of the cerebellum in visually guided tracking movement.
    Lee J; Kagamihara Y; Tomatsu S; Kakei S
    Cerebellum; 2012 Jun; 11(2):426-33. PubMed ID: 22396331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deficits in movements of the wrist ipsilateral to a stroke in hemiparetic subjects.
    Yarosh CA; Hoffman DS; Strick PL
    J Neurophysiol; 2004 Dec; 92(6):3276-85. PubMed ID: 15295013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar nuclei: rapid alternating movement, motor somatotopy, and a mechanism for the control of muscle synergy.
    Thach WT; Perry JG; Kane SA; Goodkin HP
    Rev Neurol (Paris); 1993; 149(11):607-28. PubMed ID: 8091076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preserved and impaired aspects of predictive grip force control in cerebellar patients.
    Rost K; Nowak DA; Timmann D; Hermsdörfer J
    Clin Neurophysiol; 2005 Jun; 116(6):1405-14. PubMed ID: 15978503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction torque contributes to planar reaching at slow speed.
    Yamasaki H; Tagami Y; Fujisawa H; Hoshi F; Nagasaki H
    Biomed Eng Online; 2008 Oct; 7():27. PubMed ID: 18940016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directional biases reveal utilization of arm's biomechanical properties for optimization of motor behavior.
    Goble JA; Zhang Y; Shimansky Y; Sharma S; Dounskaia NV
    J Neurophysiol; 2007 Sep; 98(3):1240-52. PubMed ID: 17625062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocybernetic investigations of pursuit and posture motor control--a strategy for a detailed characterization of movement disorders in brain-damaged children.
    Scholle HC; Erler K; Pöhlmann R; Hoyer D; Lobert S; Zwiener U
    Electromyogr Clin Neurophysiol; 1991; 31(4):215-22. PubMed ID: 1879369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellar hypermetria associated with a selective decrease in the rate of rise of antagonist activity.
    Manto M; Godaux E; Jacquy J; Hildebrand J
    Ann Neurol; 1996 Feb; 39(2):271-4. PubMed ID: 8967761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of hypermetria after a cerebellar stroke occurs as a multistage process.
    Manto M; Jacquy J; Hildebrand J; Godaux E
    Ann Neurol; 1995 Sep; 38(3):437-45. PubMed ID: 7668830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor control over the phantom limb in above-elbow amputees and its relationship with phantom limb pain.
    Gagné M; Reilly KT; Hétu S; Mercier C
    Neuroscience; 2009 Aug; 162(1):78-86. PubMed ID: 19406214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cerebellar syndrome secondary to lithium poisoning: a cinematic and electromyographic study of 2 cases].
    Manto M; Godaux E; Seillier M; Mantia M; Jacquy J
    Rev Neurol (Paris); 1994; 150(6-7):467-70. PubMed ID: 7747016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor control in humans with large-fiber sensory neuropathy.
    Sanes JN; Mauritz KH; Dalakas MC; Evarts EV
    Hum Neurobiol; 1985; 4(2):101-14. PubMed ID: 2993208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.