These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18050915)

  • 21. Characterization of immunosuppressive surface coat proteins from Steinernema glaseri that selectively kill blood cells in susceptible hosts.
    Li X; Cowles EA; Cowles RS; Gaugler R; Cox-Foster DL
    Mol Biochem Parasitol; 2009 Jun; 165(2):162-9. PubMed ID: 19428663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of symbiotic and non-symbiotic bacteria in carbon dioxide production from hosts infected with Steinernema riobrave.
    Christen JM; Campbell JF; Zurek L; Shapiro-Ilan DI; Lewis EE; Ramaswamy SB
    J Invertebr Pathol; 2008 Sep; 99(1):35-42. PubMed ID: 18621386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The bacterium associated with the entomopathogenic nematode Steinernema abbasi (Nematoda: Steinernematidae) isolated from Taiwan.
    Tsai MH; Tang LC; Hou RF
    J Invertebr Pathol; 2008 Oct; 99(2):242-5. PubMed ID: 18486948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae).
    Campos-Herrera R; Tailliez P; Pagès S; Ginibre N; Gutiérrez C; Boemare NE
    J Invertebr Pathol; 2009 Oct; 102(2):173-81. PubMed ID: 19682458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis.
    Sadekuzzaman M; Park Y; Lee S; Kim K; Jung JK; Kim Y
    J Invertebr Pathol; 2017 May; 145():13-22. PubMed ID: 28302381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination.
    Goodrich-Blair H; Clarke DJ
    Mol Microbiol; 2007 Apr; 64(2):260-8. PubMed ID: 17493120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manifold aspects of specificity in a nematode-bacterium mutualism.
    Chapuis E; Emelianoff V; Paulmier V; Le Brun N; Pagès S; Sicard M; Ferdy JB
    J Evol Biol; 2009 Oct; 22(10):2104-17. PubMed ID: 19732258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Regulators of Entomopathogenic Nematode-Bacterial Symbiosis.
    Eleftherianos I; Heryanto C
    Results Probl Cell Differ; 2020; 69():453-468. PubMed ID: 33263883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early timing and new combinations to increase the efficacy of neonicotinoid-entomopathogenic nematode (Rhabditida: Heterorhabditidae) combinations against white grubs (Coleoptera: Scarabaeidae).
    Koppenhöfer AM; Fuzy EM
    Pest Manag Sci; 2008 Jul; 64(7):725-35. PubMed ID: 18260065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature effects on Korean entomopathogenic nematodes, Steinernema glaseri and S. longicaudum, and their symbiotic bacteria.
    Hang TD; Choo HY; Lee DW; Lee SM; Kaya HK; Park CG
    J Microbiol Biotechnol; 2007 Mar; 17(3):420-7. PubMed ID: 18050945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photorhabdus: a model for the analysis of pathogenicity and mutualism.
    Clarke DJ
    Cell Microbiol; 2008 Nov; 10(11):2159-67. PubMed ID: 18647173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laboratory maintenance of Flavobacterium psychrophilum and Flavobacterium columnare.
    Cain KD; Lafrentz BR
    Curr Protoc Microbiol; 2007 Aug; Chapter 13():Unit 13B.1. PubMed ID: 18770610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Group selection on population size affects life-history patterns in the entomopathogenic nematode Steinernema carpocapsae.
    Bashey F; Lively CM
    Evolution; 2009 May; 63(5):1301-11. PubMed ID: 19187254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First record of the insect pathogenic alga Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) infection in larvae and pupae of Rhizophagusgrandis Gyll. (Coleoptera, Rhizophaginae) from Turkey.
    Yaman M; Radek R; Aydin C; Tosun O; Ertürk O
    J Invertebr Pathol; 2009 Oct; 102(2):182-4. PubMed ID: 19619556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts.
    Emelianoff V; Chapuis E; Le Brun N; Chiral M; Moulia C; Ferdy JB
    Evolution; 2008 Apr; 62(4):932-42. PubMed ID: 18194474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Providencia sneebia sp. nov. and Providencia burhodogranariea sp. nov., isolated from wild Drosophila melanogaster.
    Juneja P; Lazzaro BP
    Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):1108-11. PubMed ID: 19406801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Host range and infectivity of Heterorhabditis bacteriophora (Heterorhabditidae) from Ukraine.
    Stefanovska T; Pidlishyuk V; Kaya H
    Commun Agric Appl Biol Sci; 2008; 73(4):693-8. PubMed ID: 19226814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological pest control in beetle agriculture.
    Aanen DK; Slippers B; Wingfield MJ
    Trends Microbiol; 2009 May; 17(5):179-82. PubMed ID: 19375917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lysozymes and lysozyme-like proteins from the fall armyworm, Spodoptera frugiperda.
    Chapelle M; Girard PA; Cousserans F; Volkoff NA; Duvic B
    Mol Immunol; 2009 Dec; 47(2-3):261-9. PubMed ID: 19828200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Candida kashinagacola sp. nov., C. pseudovanderkliftii sp. nov. and C. vanderkliftii sp. nov., three new yeasts from ambrosia beetle-associated sources.
    Endoh R; Suzuki M; Benno Y; Futai K
    Antonie Van Leeuwenhoek; 2008 Oct; 94(3):389-402. PubMed ID: 18537038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.