These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 18050944)
21. Effect of cobalt enrichment on growth and hydrocarbon accumulation of Botryococcus braunii with immobilized biofilm attached cultivation. Cheng P; Wang J; Liu T Bioresour Technol; 2015 Feb; 177():204-8. PubMed ID: 25496939 [TBL] [Abstract][Full Text] [Related]
22. Effects of nitrogen source and nitrogen supply model on the growth and hydrocarbon accumulation of immobilized biofilm cultivation of B. braunii. Cheng P; Wang J; Liu T Bioresour Technol; 2014 Aug; 166():527-33. PubMed ID: 24951939 [TBL] [Abstract][Full Text] [Related]
23. Hydrocarbon recovery and biocompatibility of solvents for extraction from cultures of Botryococcus braunii. Frenz J; Largeau C; Casadevall E; Kollerup F; Daugulis AJ Biotechnol Bioeng; 1989 Sep; 34(6):755-62. PubMed ID: 18588162 [TBL] [Abstract][Full Text] [Related]
24. Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Baba M; Kikuta F; Suzuki I; Watanabe MM; Shiraiwa Y Bioresour Technol; 2012 Apr; 109():266-70. PubMed ID: 21683581 [TBL] [Abstract][Full Text] [Related]
25. Effects of soybean curd wastewater on the growth and hydrocarbon production of Botryococcus braunii strain BOT-22. Yonezawa N; Matsuura H; Shiho M; Kaya K; Watanabe MM Bioresour Technol; 2012 Apr; 109():304-7. PubMed ID: 21940163 [TBL] [Abstract][Full Text] [Related]
26. Assessment of the impact of salinity and irradiance on the combined carbon dioxide sequestration and carotenoids production by Dunaliella salina: A mathematical model. Araújo OQ; Gobbi CN; Chaloub RM; Coelho MA Biotechnol Bioeng; 2009 Feb; 102(2):425-35. PubMed ID: 18767189 [TBL] [Abstract][Full Text] [Related]
27. Fatty acids in Botryococcus braunii accelerate topical delivery of flurbiprofen into and across skin. Fang JY; Chiu HC; Wu JT; Chiang YR; Hsu SH Int J Pharm; 2004 May; 276(1-2):163-73. PubMed ID: 15113623 [TBL] [Abstract][Full Text] [Related]
28. Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions. Vidyashankar S; Deviprasad K; Chauhan VS; Ravishankar GA; Sarada R Bioresour Technol; 2013 Sep; 144():28-37. PubMed ID: 23850823 [TBL] [Abstract][Full Text] [Related]
29. Effect of thermal pretreatments on hydrocarbon recovery from Botryococcus braunii. Magota A; Saga K; Okada S; Atobe S; Imou K Bioresour Technol; 2012 Nov; 123():195-8. PubMed ID: 22940319 [TBL] [Abstract][Full Text] [Related]
30. [Lipids from the green algae Botryococcus during staged growth in batch mode]. Kalacheva GS; Zhila NO; Volova TG Mikrobiologiia; 2001; 70(3):305-12. PubMed ID: 11450451 [TBL] [Abstract][Full Text] [Related]
31. Outdoor open pond batch production of green microalga Botryococcus braunii for high hydrocarbon production: enhanced production with salinity. Ruangsomboon S; Dimak J; Jongput B; Wiwatanaratanabutr I; Kanyawongha P Sci Rep; 2020 Feb; 10(1):2731. PubMed ID: 32066792 [TBL] [Abstract][Full Text] [Related]
32. Biomass and hydrocarbon production from Botryococcus braunii: A review focusing on cultivation methods. Nazloo EK; Danesh M; Sarrafzadeh MH; Moheimani NR; Ennaceri H Sci Total Environ; 2024 May; 926():171734. PubMed ID: 38508258 [TBL] [Abstract][Full Text] [Related]
33. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Blanco AM; Moreno J; Del Campo JA; Rivas J; Guerrero MG Appl Microbiol Biotechnol; 2007 Jan; 73(6):1259-66. PubMed ID: 17033775 [TBL] [Abstract][Full Text] [Related]
34. Improvement of hydrocarbon recovery by spouting solvent into culture of Botryococcus braunii. Choi SP; Bahn SH; Sim SJ Bioprocess Biosyst Eng; 2013 Dec; 36(12):1977-85. PubMed ID: 23703677 [TBL] [Abstract][Full Text] [Related]
36. Comparative transcriptome analyses of oleaginous Cheng P; Zhou C; Wang Y; Xu Z; Xu J; Zhou D; Zhang Y; Wu H; Zhang X; Liu T; Tang M; Yang Q; Yan X; Fan J Biotechnol Biofuels; 2018; 11():333. PubMed ID: 30568733 [TBL] [Abstract][Full Text] [Related]
37. Micronutrient requirements for growth and hydrocarbon production in the oil producing green alga Botryococcus braunii (Chlorophyta). Song L; Qin JG; Su S; Xu J; Clarke S; Shan Y PLoS One; 2012; 7(7):e41459. PubMed ID: 22848502 [TBL] [Abstract][Full Text] [Related]
38. A bioprocess engineering approach for the production of hydrocarbons and fatty acids from green microalga under high cobalt concentration as the feedstock of high-grade biofuels. Patel A; Rantzos C; Krikigianni E; Rova U; Christakopoulos P; Matsakas L Biotechnol Biofuels Bioprod; 2024 May; 17(1):64. PubMed ID: 38730294 [TBL] [Abstract][Full Text] [Related]
39. Transcriptomic analysis of a moderately growing subisolate Botryococcus braunii 779 (Chlorophyta) in response to nitrogen deprivation. Fang L; Sun D; Xu Z; He J; Qi S; Chen X; Chew W; Liu J Biotechnol Biofuels; 2015; 8():130. PubMed ID: 26322124 [TBL] [Abstract][Full Text] [Related]
40. Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells. Yildiz-Ozturk E; Ilhan-Ayisigi E; Togtema A; Gouveia J; Yesil-Celiktas O Bioresour Technol; 2018 May; 256():328-332. PubMed ID: 29459319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]