These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18050948)

  • 1. Effect of electrochemical redox reaction on growth and metabolism of Saccharomyces cerevisiae as an environmental factor.
    Na KB; Hwang TS; Lee SH; Ahn DH; Park DH
    J Microbiol Biotechnol; 2007 Mar; 17(3):445-53. PubMed ID: 18050948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of ethanol production by electrochemical redox coupling of Zymomonas mobilis and Saccharomyces cerevisiae.
    Jeon BY; Park DH
    J Microbiol Biotechnol; 2010 Jan; 20(1):94-100. PubMed ID: 20134239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae.
    Shin HS; Zeikus JG; Jain MK
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):476-81. PubMed ID: 11954794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of ethanol directly from potato starch by mixed culture of Saccharomyces cerevisiae and Aspergillus niger using electrochemical bioreactor.
    Jeon BY; Kim DH; Na BK; Ahn DH; Park DH
    J Microbiol Biotechnol; 2008 Mar; 18(3):545-51. PubMed ID: 18388475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH.
    Kang HS; Na BK; Park DH
    Biotechnol Lett; 2007 Aug; 29(8):1277-80. PubMed ID: 17549436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous ethanol fermentation using the fusion strain SPSC (I) flocs: floc size distribution, cell growth, and ethanol fermentation kinetics.
    Fengwu B; Yan J; Pusun F; Xiuliang H
    Chin J Biotechnol; 1999; 15(4):245-52. PubMed ID: 11037950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.
    Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.
    Steinbusch KJ; Hamelers HV; Schaap JD; Kampman C; Buisman CJ
    Environ Sci Technol; 2010 Jan; 44(1):513-7. PubMed ID: 19950965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine.
    Sakai S; Yagishita T
    Biotechnol Bioeng; 2007 Oct; 98(2):340-8. PubMed ID: 17390385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of post-harvest sugarcane residue for ethanol production.
    Dawson L; Boopathy R
    Bioresour Technol; 2007 Jul; 98(9):1695-9. PubMed ID: 16935500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production.
    Narendranath NV; Power R
    Appl Environ Microbiol; 2005 May; 71(5):2239-43. PubMed ID: 15870306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigations of multiple steady states in aerobic continuous cultivations of Saccharomyces cerevisiae.
    Lei F; Olsson L; Jørgensen SB
    Biotechnol Bioeng; 2003 Jun; 82(7):766-77. PubMed ID: 12701142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures.
    Nielsen MK; Arneborg N
    Food Microbiol; 2007 Feb; 24(1):101-5. PubMed ID: 16943101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of cashew apple juice for the production of fuel ethanol.
    Pinheiro AD; Rocha MV; Macedo GR; Gonçalves LR
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):227-34. PubMed ID: 18418754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of lactose fermentation using a recombinant Saccharomyces cerevisiae strain.
    Jurascík M; Guimarães P; Klein J; Domingues L; Teixeira J; Markos J
    Biotechnol Bioeng; 2006 Aug; 94(6):1147-54. PubMed ID: 16615146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of magnesium ions during beer fermentation.
    Pironcheva GL
    Cytobios; 1998; 94(377):135-9. PubMed ID: 9871986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternate method of calculating the free-energy change accompanying the growth of saccharomyces cerevisiae (Hansen) on three substrates.
    Battley EH
    Biotechnol Bioeng; 1979 Nov; 21(11):1929-61. PubMed ID: 385077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae.
    Wang M; Zhao J; Yang Z; Du Z; Yang Z
    Bioelectrochemistry; 2007 Nov; 71(2):107-12. PubMed ID: 17499559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.