These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 18051042)
1. Segmentation of myocardial volumes from real-time 3D echocardiography using an incompressibility constraint. Zhu Y; Papademetris X; Sinusas A; Duncan JS Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):44-51. PubMed ID: 18051042 [TBL] [Abstract][Full Text] [Related]
2. A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint. Zhu Y; Papademetris X; Sinusas AJ; Duncan JS Med Image Anal; 2010 Jun; 14(3):429-48. PubMed ID: 20350833 [TBL] [Abstract][Full Text] [Related]
3. A dynamical shape prior for LV segmentation from RT3D echocardiography. Zhu Y; Papademetris X; Sinusas AJ; Duncan JS Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):206-13. PubMed ID: 20425989 [TBL] [Abstract][Full Text] [Related]
4. Image-driven cardiac left ventricle segmentation for the evaluation of multiview fused real-time 3-dimensional echocardiography images. Rajpoot K; Noble JA; Grau V; Szmigielski C; Becher H Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):893-900. PubMed ID: 20426196 [TBL] [Abstract][Full Text] [Related]
5. LV motion tracking from 3D echocardiography using textural and structural information. Myronenko A; Song X; Sahn DJ Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):428-35. PubMed ID: 18044597 [TBL] [Abstract][Full Text] [Related]
6. Feasibility of left ventricular shape analysis from transthoracic real-time 3-D echocardiographic images. Maffessanti F; Lang RM; Corsi C; Mor-Avi V; Caiani EG Ultrasound Med Biol; 2009 Dec; 35(12):1953-62. PubMed ID: 19828226 [TBL] [Abstract][Full Text] [Related]
7. Registration-assisted segmentation of real-time 3-D echocardiographic data using deformable models. Zagrodsky V; Walimbe V; Castro-Pareja CR; Qin JX; Song JM; Shekhar R IEEE Trans Med Imaging; 2005 Sep; 24(9):1089-99. PubMed ID: 16156348 [TBL] [Abstract][Full Text] [Related]
8. Interactive volume rendering of real-time three-dimensional ultrasound images. Kuo J; Bredthauer GR; Castellucci JB; von Ramm OT IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):313-8. PubMed ID: 17328328 [TBL] [Abstract][Full Text] [Related]
9. Assessment of left ventricular volumes and function by real time three-dimensional echocardiography in a pediatric population: a TomTec versus QLAB comparison. Hascoët S; Brierre G; Caudron G; Cardin C; Bongard V; Acar P Echocardiography; 2010 Nov; 27(10):1263-73. PubMed ID: 20584067 [TBL] [Abstract][Full Text] [Related]
10. Automatic 3-D segmentation of endocardial border of the left ventricle from ultrasound images. Santiago C; Nascimento JC; Marques JS IEEE J Biomed Health Inform; 2015 Jan; 19(1):339-48. PubMed ID: 25561455 [TBL] [Abstract][Full Text] [Related]
11. Left ventricular volume estimation in cardiac three-dimensional ultrasound: a semiautomatic border detection approach. van Stralen M; Bosch JG; Voormolen MM; van Burken G; Krenning BJ; van Geuns RJ; Lancée CT; de Jong N; Reiber JH Acad Radiol; 2005 Oct; 12(10):1241-9. PubMed ID: 16179201 [TBL] [Abstract][Full Text] [Related]
12. Real-time tracking of the left ventricle in 3D echocardiography using a state estimation approach. Orderud F; Hansgård J; Rabben SI Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):858-65. PubMed ID: 18051139 [TBL] [Abstract][Full Text] [Related]
13. Fully automatic detection of salient features in 3-d transesophageal images. Curiale AH; Haak A; Vegas-Sánchez-Ferrero G; Ren B; Aja-Fernández S; Bosch JG Ultrasound Med Biol; 2014 Dec; 40(12):2868-84. PubMed ID: 25308940 [TBL] [Abstract][Full Text] [Related]
14. Model driven quantification of left ventricular function from sparse single-beat 3D echocardiography. Ma M; van Stralen M; Reiber JH; Bosch JG; Lelieveldt BP Med Image Anal; 2010 Aug; 14(4):582-93. PubMed ID: 20537578 [TBL] [Abstract][Full Text] [Related]
15. LV segmentation through the analysis of radio frequency ultrasonic images. Yan P; Jia CX; Sinusas A; Thiele K; O'Donnell M; Duncan JS Inf Process Med Imaging; 2007; 20():233-44. PubMed ID: 17633703 [TBL] [Abstract][Full Text] [Related]
16. 3D left ventricular segmentation using double active contours and double active surfaces. Phumeechanya S; Pluempitiwiriyawej C; Sotthivirat S Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():214-7. PubMed ID: 19162631 [TBL] [Abstract][Full Text] [Related]
17. Segmentation of 3D radio frequency echocardiography using a spatio-temporal predictor. Pearlman PC; Tagare HD; Lin BA; Sinusas AJ; Duncan JS Med Image Anal; 2012 Feb; 16(2):351-60. PubMed ID: 22078842 [TBL] [Abstract][Full Text] [Related]
18. The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking. Rajpoot K; Grau V; Noble JA; Becher H; Szmigielski C Med Image Anal; 2011 Aug; 15(4):514-28. PubMed ID: 21420892 [TBL] [Abstract][Full Text] [Related]
19. Segmentation of 3D RF echocardiography using a multiframe spatio-temporal predictor. Pearlman PC; Tagare HD; Lin BA; Sinusas AJ; Duncan JS Inf Process Med Imaging; 2011; 22():37-48. PubMed ID: 21761644 [TBL] [Abstract][Full Text] [Related]
20. Soft level set coupling for LV segmentation in gated perfusion SPECT. Kohlberger T; Funka-Lea G; Desh V Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):327-34. PubMed ID: 18051075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]