These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18051120)

  • 1. Real-time nonlinear finite element analysis for surgical simulation using graphics processing units.
    Taylor ZA; Cheng M; Ourselin S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):701-8. PubMed ID: 18051120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed nonlinear finite element analysis for surgical simulation using graphics processing units.
    Taylor ZA; Cheng M; Ourselin S
    IEEE Trans Med Imaging; 2008 May; 27(5):650-63. PubMed ID: 18450538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reduced order explicit dynamic finite element algorithm for surgical simulation.
    Taylor ZA; Crozier S; Ourselin S
    IEEE Trans Med Imaging; 2011 Sep; 30(9):1713-21. PubMed ID: 21511562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time surgical simulation using reduced order finite element analysis.
    Taylor ZA; Crozier S; Ourselin S
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):388-95. PubMed ID: 20879339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time finite element modeling for surgery simulation: an application to virtual suturing.
    Berkley J; Turkiyyah G; Berg D; Ganter M; Weghorst S
    IEEE Trans Vis Comput Graph; 2004; 10(3):314-25. PubMed ID: 18579962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reduced order finite element algorithm for surgical simulation.
    Taylor ZA; Ourselin S; Crozier S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():239-42. PubMed ID: 21096959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPU-based acceleration of computations in nonlinear finite element deformation analysis.
    Mafi R; Sirouspour S
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):365-81. PubMed ID: 24166875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time prediction of brain shift using nonlinear finite element algorithms.
    Joldes GR; Wittek A; Couton M; Warfield SK; Miller K
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):300-7. PubMed ID: 20426125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution.
    Taylor ZA; Comas O; Cheng M; Passenger J; Hawkes DJ; Atkinson D; Ourselin S
    Med Image Anal; 2009 Apr; 13(2):234-44. PubMed ID: 19019721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hyperelastic finite-element model of human skin for interactive real-time surgical simulation.
    Lapeer RJ; Gasson PD; Karri V
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1013-22. PubMed ID: 20172812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft tissue deformation simulation in virtual surgery using nonlinear finite element method.
    Yan Z; Gu L; Huang P; Lv S; Yu X; Kong X
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3642-5. PubMed ID: 18002786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.
    Jia S; Zhang W; Yu X; Pan Z
    Int J Comput Assist Radiol Surg; 2015 Sep; 10(9):1477-91. PubMed ID: 25578992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
    Johnsen SF; Taylor ZA; Clarkson MJ; Hipwell J; Modat M; Eiben B; Han L; Hu Y; Mertzanidou T; Hawkes DJ; Ourselin S
    Int J Comput Assist Radiol Surg; 2015 Jul; 10(7):1077-95. PubMed ID: 25241111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meshless algorithm for soft tissue cutting in surgical simulation.
    Jin X; Joldes GR; Miller K; Yang KH; Wittek A
    Comput Methods Biomech Biomed Engin; 2014 May; 17(7):800-11. PubMed ID: 22974246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic generation of hexahedral and tetrahedral meshes.
    Zerfass P; Keeve E
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():79-82. PubMed ID: 12451778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards real-time finite-strain anisotropic thermo-visco-elastodynamic analysis of soft tissues for thermal ablative therapy.
    Zhang J; Lay RJ; Roberts SK; Chauhan S
    Comput Methods Programs Biomed; 2021 Jan; 198():105789. PubMed ID: 33069033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.
    Wittek A; Joldes G; Couton M; Warfield SK; Miller K
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):292-303. PubMed ID: 20868706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-GPU accelerated virtual-reality interaction simulation framework.
    Shao X; Xu W; Lin L; Zhang F
    PLoS One; 2019; 14(4):e0214852. PubMed ID: 30973907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Nonlinear Finite Element Computations on GPU - Application to Neurosurgical Simulation.
    Joldes GR; Wittek A; Miller K
    Comput Methods Appl Mech Eng; 2010 Dec; 199(49-52):3305-3314. PubMed ID: 21179562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visuohaptic simulation of bone surgery for training and evaluation.
    Morris D; Sewell C; Barbagli F; Salisbury K; Blevins NH; Girod S
    IEEE Comput Graph Appl; 2006; 26(6):48-57. PubMed ID: 17120913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.