These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 18051365)
1. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function. Choi AR; Kim SY; Yoon SR; Bae K; Jung KH J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365 [TBL] [Abstract][Full Text] [Related]
2. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
3. Demonstration of a sensory rhodopsin in eubacteria. Jung KH; Trivedi VD; Spudich JL Mol Microbiol; 2003 Mar; 47(6):1513-22. PubMed ID: 12622809 [TBL] [Abstract][Full Text] [Related]
4. Conformational changes in the photocycle of Anabaena sensory rhodopsin: absence of the Schiff base counterion protonation signal. Bergo VB; Ntefidou M; Trivedi VD; Amsden JJ; Kralj JM; Rothschild KJ; Spudich JL J Biol Chem; 2006 Jun; 281(22):15208-14. PubMed ID: 16537532 [TBL] [Abstract][Full Text] [Related]
5. Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump. Furutani Y; Sumii M; Fan Y; Shi L; Waschuk SA; Brown LS; Kandori H Biochemistry; 2006 Dec; 45(51):15349-58. PubMed ID: 17176057 [TBL] [Abstract][Full Text] [Related]
6. Engineering an inward proton transport from a bacterial sensor rhodopsin. Kawanabe A; Furutani Y; Jung KH; Kandori H J Am Chem Soc; 2009 Nov; 131(45):16439-44. PubMed ID: 19848403 [TBL] [Abstract][Full Text] [Related]
7. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra. Kloppmann E; Becker T; Ullmann GM Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786 [TBL] [Abstract][Full Text] [Related]
8. Cytoplasmic shuttling of protons in anabaena sensory rhodopsin: implications for signaling mechanism. Shi L; Yoon SR; Bezerra AG; Jung KH; Brown LS J Mol Biol; 2006 May; 358(3):686-700. PubMed ID: 16530786 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions. Adamian L; Ouyang Z; Tseng YY; Liang J Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602 [TBL] [Abstract][Full Text] [Related]
10. FTIR study of the L intermediate of Anabaena sensory rhodopsin: structural changes in the cytoplasmic region. Kawanabe A; Furutani Y; Yoon SR; Jung KH; Kandori H Biochemistry; 2008 Sep; 47(38):10033-40. PubMed ID: 18759456 [TBL] [Abstract][Full Text] [Related]
11. Photochemistry of a putative new class of sensory rhodopsin (SRIII) coded by xop2 of Haloarcular marismortui. Nakao Y; Kikukawa T; Shimono K; Tamogami J; Kimitsuki N; Nara T; Unno M; Ihara K; Kamo N J Photochem Photobiol B; 2011 Jan; 102(1):45-54. PubMed ID: 20880715 [TBL] [Abstract][Full Text] [Related]
12. Retinal-protein interactions in halorhodopsin from Natronomonas pharaonis: binding and retinal thermal isomerization catalysis. Maiti TK; Engelhard M; Sheves M J Mol Biol; 2009 Dec; 394(3):472-84. PubMed ID: 19766652 [TBL] [Abstract][Full Text] [Related]
13. An inward proton transport using Anabaena sensory rhodopsin. Kawanabe A; Furutani Y; Jung KH; Kandori H J Microbiol; 2011 Feb; 49(1):1-6. PubMed ID: 21369972 [TBL] [Abstract][Full Text] [Related]
14. FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K. Kawanabe A; Furutani Y; Jung KH; Kandori H Biochemistry; 2006 Apr; 45(14):4362-70. PubMed ID: 16584171 [TBL] [Abstract][Full Text] [Related]
15. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719 [TBL] [Abstract][Full Text] [Related]
16. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619 [TBL] [Abstract][Full Text] [Related]
17. Expression of Anabaena sensory rhodopsin is influenced by different codons of seven residues at the N-terminal region. Tsogbadrakh O; Choi AR; Jung KH Protein Expr Purif; 2018 Nov; 151():1-8. PubMed ID: 29793033 [TBL] [Abstract][Full Text] [Related]
18. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. Takahashi Y; Ebrey TG Biochemistry; 2003 May; 42(20):6025-34. PubMed ID: 12755604 [TBL] [Abstract][Full Text] [Related]
19. Tryptophan 171 in Pharaonis phoborhodopsin (sensory rhodopsin II) interacts with the chromophore retinal and its substitution with alanine or threonine slowed down the decay of M- and O-intermediate. Iwasa T; Abe E; Yakura Y; Yoshida H; Kamo N Photochem Photobiol; 2007; 83(2):328-35. PubMed ID: 17029563 [TBL] [Abstract][Full Text] [Related]
20. Proton transfer reactions in the F86D and F86E mutants of pharaonis phoborhodopsin (sensory rhodopsin II). Iwamoto M; Furutani Y; Kamo N; Kandori H Biochemistry; 2003 Mar; 42(10):2790-6. PubMed ID: 12627944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]