These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 18051893)
1. [Freeze-drying of oleanolic acid-loaded nanosuspensions]. Zhao XL; Chen HB; Chen YJ; Yang XL Zhongguo Zhong Yao Za Zhi; 2007 Sep; 32(18):1874-6. PubMed ID: 18051893 [TBL] [Abstract][Full Text] [Related]
2. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. Bozdag S; Dillen K; Vandervoort J; Ludwig A J Pharm Pharmacol; 2005 Jun; 57(6):699-707. PubMed ID: 15969924 [TBL] [Abstract][Full Text] [Related]
3. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545 [TBL] [Abstract][Full Text] [Related]
4. Trehalose is not a universal solution for solid lipid nanoparticles freeze-drying. Doktorovova S; Shegokar R; Fernandes L; Martins-Lopes P; Silva AM; Müller RH; Souto EB Pharm Dev Technol; 2014 Dec; 19(8):922-9. PubMed ID: 24099511 [TBL] [Abstract][Full Text] [Related]
5. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Anhorn MG; Mahler HC; Langer K Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043 [TBL] [Abstract][Full Text] [Related]
6. Study on formability of solid nanosuspensions during solidification: II novel roles of freezing stress and cryoprotectant property. Yue PF; Li G; Dan JX; Wu ZF; Wang CH; Zhu WF; Yang M Int J Pharm; 2014 Nov; 475(1-2):35-48. PubMed ID: 25158243 [TBL] [Abstract][Full Text] [Related]
7. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Ohshima H; Miyagishima A; Kurita T; Makino Y; Iwao Y; Sonobe T; Itai S Int J Pharm; 2009 Jul; 377(1-2):180-4. PubMed ID: 19446623 [TBL] [Abstract][Full Text] [Related]
8. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Soares S; Fonte P; Costa A; Andrade J; Seabra V; Ferreira D; Reis S; Sarmento B Int J Pharm; 2013 Nov; 456(2):370-81. PubMed ID: 24036086 [TBL] [Abstract][Full Text] [Related]
9. Stability study of drug-loaded proteinoid microsphere formulations during freeze-drying. Ma X; Santiago N; Chen YS; Chaudhary K; Milstein SJ; Baughman RA J Drug Target; 1994; 2(1):9-21. PubMed ID: 8069587 [TBL] [Abstract][Full Text] [Related]
10. Optimization of freeze-drying condition of amikacin solid lipid nanoparticles using D-optimal experimental design. Varshosaz J; Ghaffari S; Khoshayand MR; Atyabi F; Dehkordi AJ; Kobarfard F Pharm Dev Technol; 2012; 17(2):187-94. PubMed ID: 21047276 [TBL] [Abstract][Full Text] [Related]
11. [Development of Silymarin nanocrystals lyophilized power applying nanosuspension technology]. Zhao X; Wang G; Zhang B; Li H; Nie Q; Zang C; Zhao X Zhongguo Zhong Yao Za Zhi; 2009 Jun; 34(12):1503-8. PubMed ID: 19777833 [TBL] [Abstract][Full Text] [Related]
12. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. Abdelwahed W; Degobert G; Fessi H Int J Pharm; 2006 Feb; 309(1-2):178-88. PubMed ID: 16326053 [TBL] [Abstract][Full Text] [Related]
13. Preparation of an alternative freeze-dried pH-sensitive cyclosporine A loaded nanoparticles formulation and its pharmacokinetic profile in rats. Yang ZQ; Xu J; Pan P; Zhang XN Pharmazie; 2009 Jan; 64(1):26-31. PubMed ID: 19216227 [TBL] [Abstract][Full Text] [Related]
14. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers. Wang L; Ma Y; Gu Y; Liu Y; Zhao J; Yan B; Wang Y J Microencapsul; 2018 May; 35(3):241-248. PubMed ID: 29624090 [TBL] [Abstract][Full Text] [Related]
15. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution. Beirowski J; Inghelbrecht S; Arien A; Gieseler H J Pharm Sci; 2011 May; 100(5):1958-68. PubMed ID: 21374626 [TBL] [Abstract][Full Text] [Related]
16. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. Lee MK; Kim MY; Kim S; Lee J J Pharm Sci; 2009 Dec; 98(12):4808-17. PubMed ID: 19475555 [TBL] [Abstract][Full Text] [Related]
17. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Teeranachaideekul V; Junyaprasert VB; Souto EB; Müller RH Int J Pharm; 2008 Apr; 354(1-2):227-34. PubMed ID: 18242898 [TBL] [Abstract][Full Text] [Related]
19. Process optimization of a novel production method for nanosuspensions using design of experiments (DoE). Salazar J; Heinzerling O; Müller RH; Möschwitzer JP Int J Pharm; 2011 Nov; 420(2):395-403. PubMed ID: 21925582 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of freeze-dried 2-methoxyestradiol nanoparticle powders. Du B; Li XT; Zhao Y; A YM; Zhang ZZ Pharmazie; 2010 Jul; 65(7):471-6. PubMed ID: 20662313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]