BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 18052106)

  • 1. Protein damage by reactive electrophiles: targets and consequences.
    Liebler DC
    Chem Res Toxicol; 2008 Jan; 21(1):117-28. PubMed ID: 18052106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems analysis of protein modification and cellular responses induced by electrophile stress.
    Jacobs AT; Marnett LJ
    Acc Chem Res; 2010 May; 43(5):673-83. PubMed ID: 20218676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein targets of xenobiotic reactive intermediates.
    Pumford NR; Halmes NC
    Annu Rev Pharmacol Toxicol; 1997; 37():91-117. PubMed ID: 9131248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein adduct formation as a molecular mechanism in neurotoxicity.
    Lopachin RM; Decaprio AP
    Toxicol Sci; 2005 Aug; 86(2):214-25. PubMed ID: 15901921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics and Beyond: Cell Decision-Making Shaped by Reactive Electrophiles.
    Liu X; Long MJC; Aye Y
    Trends Biochem Sci; 2019 Jan; 44(1):75-89. PubMed ID: 30327250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward an "omic" physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds.
    Rubino FM; Pitton M; Di Fabio D; Colombi A
    Mass Spectrom Rev; 2009; 28(5):725-84. PubMed ID: 19127566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and detection methods for covalent drug-protein adducts.
    Zhou S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Nov; 797(1-2):63-90. PubMed ID: 14630144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic approaches to characterize protein modifications: new tools to study the effects of environmental exposures.
    Liebler DC
    Environ Health Perspect; 2002 Feb; 110 Suppl 1(Suppl 1):3-9. PubMed ID: 11834459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Redox Signaling and Reactive Sulfur Species to Regulate Electrophilic Stress].
    Kanda H; Kumagai Y
    Yakugaku Zasshi; 2020; 140(9):1119-1128. PubMed ID: 32879244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative damage in chemical teratogenesis.
    Wells PG; Kim PM; Laposa RR; Nicol CJ; Parman T; Winn LM
    Mutat Res; 1997 Dec; 396(1-2):65-78. PubMed ID: 9434860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytosolic and nuclear protein targets of thiol-reactive electrophiles.
    Dennehy MK; Richards KA; Wernke GR; Shyr Y; Liebler DC
    Chem Res Toxicol; 2006 Jan; 19(1):20-9. PubMed ID: 16411652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits.
    Wells PG; McCallum GP; Lam KC; Henderson JT; Ondovcik SL
    Birth Defects Res C Embryo Today; 2010 Jun; 90(2):103-9. PubMed ID: 20544694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation.
    LoPachin RM; Gavin T
    Free Radic Res; 2016; 50(2):195-205. PubMed ID: 26559119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein targets of reactive electrophiles in human liver microsomes.
    Shin NY; Liu Q; Stamer SL; Liebler DC
    Chem Res Toxicol; 2007 Jun; 20(6):859-67. PubMed ID: 17480101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkylation damage by lipid electrophiles targets functional protein systems.
    Codreanu SG; Ullery JC; Zhu J; Tallman KA; Beavers WN; Porter NA; Marnett LJ; Zhang B; Liebler DC
    Mol Cell Proteomics; 2014 Mar; 13(3):849-59. PubMed ID: 24429493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic studies on protein modification by cyclopentenone prostaglandins: expanding our view on electrophile actions.
    Garzón B; Oeste CL; Díez-Dacal B; Pérez-Sala D
    J Proteomics; 2011 Oct; 74(11):2243-63. PubMed ID: 21459170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversibility of covalent electrophile-protein adducts and chemical toxicity.
    Lin D; Saleh S; Liebler DC
    Chem Res Toxicol; 2008 Dec; 21(12):2361-9. PubMed ID: 19548357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive intermediates: molecular and MS-based approaches to assess the functional significance of chemical-protein adducts.
    Monks TJ; Lau SS
    Toxicol Pathol; 2013 Feb; 41(2):315-21. PubMed ID: 23222993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicological significance of DNA adducts: summary of discussions with an expert panel.
    Nestmann ER; Bryant DW; Carr CJ
    Regul Toxicol Pharmacol; 1996 Aug; 24(1 Pt 1):9-18. PubMed ID: 8921541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of human liver microsomal proteins adducted by a reactive metabolite using shotgun proteomics.
    Yang Y; Xiao Q; Humphreys WG; Dongre A; Shu YZ
    Chem Res Toxicol; 2014 Sep; 27(9):1537-46. PubMed ID: 25105203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.