BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 18052106)

  • 21. Identification of human liver microsomal proteins adducted by a reactive metabolite using shotgun proteomics.
    Yang Y; Xiao Q; Humphreys WG; Dongre A; Shu YZ
    Chem Res Toxicol; 2014 Sep; 27(9):1537-46. PubMed ID: 25105203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for detecting covalent modification of sensor proteins associated with 1,4-naphthoquinone-induced activation of electrophilic signal transduction pathways.
    Hirose R; Miura T; Sha R; Shinkai Y; Tanaka-Kagawa T; Kumagai Y
    J Toxicol Sci; 2012; 37(5):891-8. PubMed ID: 23037999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging Technologies in Mass Spectrometry-Based DNA Adductomics.
    Guo J; Turesky RJ
    High Throughput; 2019 May; 8(2):. PubMed ID: 31091740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological relevance of adduct detection to the chemoprevention of cancer.
    Sharma RA; Farmer PB
    Clin Cancer Res; 2004 Aug; 10(15):4901-12. PubMed ID: 15297390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Oculus to Profile and Probe Target Engagement In Vivo: How T-REX Was Born and Its Evolution into G-REX.
    Long MJC; Rogg C; Aye Y
    Acc Chem Res; 2021 Feb; 54(3):618-631. PubMed ID: 33228351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methods and Challenges for Computational Data Analysis for DNA Adductomics.
    Walmsley SJ; Guo J; Wang J; Villalta PW; Turesky RJ
    Chem Res Toxicol; 2019 Nov; 32(11):2156-2168. PubMed ID: 31549505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of protein adduction kinetics by quantitative mass spectrometry: competing adduction reactions of glutathione-S-transferase P1-1 with electrophiles.
    Orton CR; Liebler DC
    Chem Biol Interact; 2007 Jun; 168(2):117-27. PubMed ID: 17433278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mass Spectrometry-Based Tools to Characterize DNA-Protein Cross-Linking by Bis-Electrophiles.
    Groehler A; Degner A; Tretyakova NY
    Basic Clin Pharmacol Toxicol; 2017 Sep; 121 Suppl 3(Suppl 3):63-77. PubMed ID: 28032943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adductomics: characterizing exposures to reactive electrophiles.
    Rappaport SM; Li H; Grigoryan H; Funk WE; Williams ER
    Toxicol Lett; 2012 Aug; 213(1):83-90. PubMed ID: 21501670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covalent protein modification: the current landscape of residue-specific electrophiles.
    Shannon DA; Weerapana E
    Curr Opin Chem Biol; 2015 Feb; 24():18-26. PubMed ID: 25461720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes.
    Rushmore TH; Kong AN
    Curr Drug Metab; 2002 Oct; 3(5):481-90. PubMed ID: 12369894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal.
    Codreanu SG; Zhang B; Sobecki SM; Billheimer DD; Liebler DC
    Mol Cell Proteomics; 2009 Apr; 8(4):670-80. PubMed ID: 19054759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quinone electrophiles selectively adduct "electrophile binding motifs" within cytochrome c.
    Fisher AA; Labenski MT; Malladi S; Gokhale V; Bowen ME; Milleron RS; Bratton SB; Monks TJ; Lau SS
    Biochemistry; 2007 Oct; 46(39):11090-100. PubMed ID: 17824617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles.
    Turpaev KT
    Biochemistry (Mosc); 2013 Feb; 78(2):111-26. PubMed ID: 23581983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel approaches to identify protein adducts produced by lipid peroxidation.
    Codreanu SG; Liebler DC
    Free Radic Res; 2015; 49(7):881-7. PubMed ID: 25819163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exposure to Electrophiles Impairs Reactive Persulfide-Dependent Redox Signaling in Neuronal Cells.
    Ihara H; Kasamatsu S; Kitamura A; Nishimura A; Tsutsuki H; Ida T; Ishizaki K; Toyama T; Yoshida E; Abdul Hamid H; Jung M; Matsunaga T; Fujii S; Sawa T; Nishida M; Kumagai Y; Akaike T
    Chem Res Toxicol; 2017 Sep; 30(9):1673-1684. PubMed ID: 28837763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategies for identification of covalent xenobiotic modifications in proteins by mass spectrometry.
    Kaur S; Hall SC; Burlingame AL
    Prog Clin Biol Res; 1991; 372():107-17. PubMed ID: 1956909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A proteomic analysis of bromobenzene reactive metabolite targets in rat liver cytosol in vivo.
    Koen YM; Gogichaeva NV; Alterman MA; Hanzlik RP
    Chem Res Toxicol; 2007 Mar; 20(3):511-9. PubMed ID: 17305373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A targeted proteomics approach to the identification of peptides modified by reactive metabolites.
    Tzouros M; Pähler A
    Chem Res Toxicol; 2009 May; 22(5):853-62. PubMed ID: 19317514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective protein arylation and acetaminophen-induced hepatotoxicity.
    Cohen SD; Khairallah EA
    Drug Metab Rev; 1997; 29(1-2):59-77. PubMed ID: 9187511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.