BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18052244)

  • 1. Toward more reliable 13C and 1H chemical shift prediction: a systematic comparison of neural-network and least-squares regression based approaches.
    Smurnyy YD; Blinov KA; Churanova TS; Elyashberg ME; Williams AJ
    J Chem Inf Model; 2008 Jan; 48(1):128-34. PubMed ID: 18052244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel methods of automated structure elucidation based on 13C NMR spectroscopy.
    Meiler J; Köck M
    Magn Reson Chem; 2004 Dec; 42(12):1042-5. PubMed ID: 15470690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance validation of neural network based (13)c NMR prediction using a publicly available data source.
    Blinov KA; Smurnyy YD; Elyashberg ME; Churanova TS; Kvasha M; Steinbeck C; Lefebvre BA; Williams AJ
    J Chem Inf Model; 2008 Mar; 48(3):550-5. PubMed ID: 18293952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-molecule calculation of log p based on molar volume, hydrogen bonds, and simulated 13C NMR spectra.
    Schnackenberg LK; Beger RD
    J Chem Inf Model; 2005; 45(2):360-5. PubMed ID: 15807500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products.
    Cimino P; Gomez-Paloma L; Duca D; Riccio R; Bifulco G
    Magn Reson Chem; 2004 Oct; 42 Spec no():S26-33. PubMed ID: 15366038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders.
    Marini F; Roncaglioni A; Novic M
    J Chem Inf Model; 2005; 45(6):1507-19. PubMed ID: 16309247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks.
    Binev Y; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):940-5. PubMed ID: 15154760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of 13C nuclear magnetic resonance spectra of lignin compounds using principal component analysis and artificial neural networks.
    Jalali-Heravi M; Masoum S; Shahbazikhah P
    J Magn Reson; 2004 Nov; 171(1):176-85. PubMed ID: 15504698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding sterol-membrane interactions part I: Hartree-Fock versus DFT calculations of 13C and 1H NMR isotropic chemical shifts of sterols in solution and analysis of hydrogen-bonding effects.
    Jolibois F; Soubias O; Réat V; Milon A
    Chemistry; 2004 Nov; 10(23):5996-6004. PubMed ID: 15497135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On structure-exploiting trust-region regularized nonlinear least squares algorithms for neural-network learning.
    Mizutani E; Demmel JW
    Neural Netw; 2003; 16(5-6):745-53. PubMed ID: 12850030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butene concentration prediction in ethylene/propylene/1-butene terpolymers by FT-IR spectroscopy through multivariate statistical analysis and artificial neural networks.
    Marengo E; Longo V; Bobba M; Robotti E; Zerbinati O; Di Martino S
    Talanta; 2009 Jan; 77(3):1111-9. PubMed ID: 19064099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of octanol-water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network.
    Golmohammadi H
    J Comput Chem; 2009 Nov; 30(15):2455-65. PubMed ID: 19360793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of cytotoxicity data (CC(50)) of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm.
    Arab Chamjangali M; Beglari M; Bagherian G
    J Mol Graph Model; 2007 Jul; 26(1):360-7. PubMed ID: 17350867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical and DFT GIAO quantum-mechanical methods of (13)C chemical shifts prediction: competitors or collaborators?
    Elyashberg M; Blinov K; Smurnyy Y; Churanova T; Williams A
    Magn Reson Chem; 2010 Mar; 48(3):219-29. PubMed ID: 20108257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous spectrophotometric determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric methods.
    Khoshayand MR; Abdollahi H; Shariatpanahi M; Saadatfard A; Mohammadi A
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Aug; 70(3):491-9. PubMed ID: 17825606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic algorithm as a variable selection procedure for the simulation of 13C nuclear magnetic resonance spectra of flavonoid derivatives using multiple linear regression.
    Ghavami R; Najafi A; Sajadi M; Djannaty F
    J Mol Graph Model; 2008 Sep; 27(2):105-15. PubMed ID: 18450488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling solid-state effects on NMR chemical shifts using electrostatic models.
    Di Fiori N; Orendt AM; Caputo MC; Ferraro MB; Facelli JC
    Magn Reson Chem; 2004 Oct; 42 Spec no():S41-7. PubMed ID: 15366040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens.
    Kovalishyn VV; Kholodovych V; Tetko IV; Welsh WJ
    J Mol Graph Model; 2007 Sep; 26(2):591-4. PubMed ID: 17433745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of carbon-13 NMR chemical shift of alkanes with rooted path vector.
    Zhou LP; Sun LL; Yu Y; Lu W; Li ZL
    J Mol Graph Model; 2006 Nov; 25(3):333-9. PubMed ID: 16510301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C NMR.
    Tenailleau E; Akoka S
    J Magn Reson; 2007 Mar; 185(1):50-8. PubMed ID: 17142076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.