These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18052244)

  • 21. Direct 13C-detection for carbonyl relaxation studies of protein dynamics.
    Pasat G; Zintsmaster JS; Peng JW
    J Magn Reson; 2008 Aug; 193(2):226-32. PubMed ID: 18514001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of 13C chemical shifts in methoxyflavonol derivatives using MIA-QSPR.
    Goodarzi M; Freitas MP; Ramalho TC
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(2):563-8. PubMed ID: 19648055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A general 13C NMR spectrum predictor using data mining techniques.
    Le Bret C
    SAR QSAR Environ Res; 2000; 11(3-4):211-34. PubMed ID: 10969872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interpreting computational neural network quantitative structure-activity relationship models: a detailed interpretation of the weights and biases.
    Guha R; Stanton DT; Jurs PC
    J Chem Inf Model; 2005; 45(4):1109-21. PubMed ID: 16045306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks.
    Binev Y; Corvo M; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):946-9. PubMed ID: 15154761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy.
    Tewari JC; Dixit V; Cho BK; Malik KA
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1119-27. PubMed ID: 18424176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution.
    O'Hare B; Benesi AJ; Showalter SA
    J Magn Reson; 2009 Oct; 200(2):354-8. PubMed ID: 19648037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DFT-GIAO 1H and 13C NMR prediction of chemical shifts for the configurational assignment of 6beta-hydroxyhyoscyamine diastereoisomers.
    Muñoz MA; Joseph-Nathan P
    Magn Reson Chem; 2009 Jul; 47(7):578-84. PubMed ID: 19373852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients.
    Varnek A; Gaudin C; Marcou G; Baskin I; Pandey AK; Tetko IV
    J Chem Inf Model; 2009 Jan; 49(1):133-44. PubMed ID: 19125628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation of aromatic-carbon 13C NMR signals from di-oxygenated alkyl bands by a chemical-shift-anisotropy filter.
    Mao JD; Schmidt-Rohr K
    Solid State Nucl Magn Reson; 2004 Aug; 26(1):36-45. PubMed ID: 15157537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substitution patterns in aromatic rings by increment analysis. Model development and application to natural organic matter.
    Perdue EM; Hertkorn N; Kettrup A
    Anal Chem; 2007 Feb; 79(3):1010-21. PubMed ID: 17263329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling NMR chemical shift: A survey of density functional theory approaches for calculating tensor properties.
    Sefzik TH; Turco D; Iuliucci RJ; Facelli JC
    J Phys Chem A; 2005 Feb; 109(6):1180-7. PubMed ID: 16833428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass spectrometry and partial least-squares regression: a tool for identification of wheat variety and end-use quality.
    Sørensen HA; Petersen MK; Jacobsen S; Søndergaard I
    J Mass Spectrom; 2004 Jun; 39(6):607-12. PubMed ID: 15236298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative structure spectroscopy relationships of carbon-13 nuclear magnetic resonance chemical shifts of steroids.
    Tong J; Liu S; Zhou P; Zhang S; Li SZ
    J Mol Graph Model; 2007 Jul; 26(1):86-92. PubMed ID: 17204441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new RBF neural network with boundary value constraints.
    Hong X; Chen S
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):298-303. PubMed ID: 19068436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting pK(a) by molecular tree structured fingerprints and PLS.
    Xing L; Glen RC; Clark RD
    J Chem Inf Comput Sci; 2003; 43(3):870-9. PubMed ID: 12767145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine.
    Zhang Y; Cong Q; Xie Y; JingxiuYang ; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1408-13. PubMed ID: 18538628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear magnetic resonance-based screening of thalassemia and quantification of some hematological parameters using chemometric methods.
    Arjmand M; Kompany-Zareh M; Vasighi M; Parvizzadeh N; Zamani Z; Nazgooei F
    Talanta; 2010 Jun; 81(4-5):1229-36. PubMed ID: 20441889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Least-squares chemical shift separation for (13)C metabolic imaging.
    Reeder SB; Brittain JH; Grist TM; Yen YF
    J Magn Reson Imaging; 2007 Oct; 26(4):1145-52. PubMed ID: 17896366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids.
    Fragkaki AG; Farmaki E; Thomaidis N; Tsantili-Kakoulidou A; Angelis YS; Koupparis M; Georgakopoulos C
    J Chromatogr A; 2012 Sep; 1256():232-9. PubMed ID: 22901297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.