These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 18052302)
1. Graphene nanoFlakes with large spin. Wang WL; Meng S; Kaxiras E Nano Lett; 2008 Jan; 8(1):241-5. PubMed ID: 18052302 [TBL] [Abstract][Full Text] [Related]
2. Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Wang WL; Yazyev OV; Meng S; Kaxiras E Phys Rev Lett; 2009 Apr; 102(15):157201. PubMed ID: 19518670 [TBL] [Abstract][Full Text] [Related]
3. Magnetism and perfect spin filtering effect in graphene nanoflakes. Sheng W; Ning ZY; Yang ZQ; Guo H Nanotechnology; 2010 Sep; 21(38):385201. PubMed ID: 20739743 [TBL] [Abstract][Full Text] [Related]
4. Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes. Kuamit T; Ratanasak M; Rungnim C; Parasuk V J Mol Model; 2017 Nov; 23(12):355. PubMed ID: 29177727 [TBL] [Abstract][Full Text] [Related]
5. Understanding the non-covalent interaction mediated modulations on the electronic structure of quasi-zero-dimensional graphene nanoflakes. Sarmah A; Hobza P Phys Chem Chem Phys; 2018 Jul; 20(27):18718-18728. PubMed ID: 29956698 [TBL] [Abstract][Full Text] [Related]
6. Zero-energy-state-oriented tunability of spin polarization in zigzag-edged bowtie-shaped graphene nanoflakes under an electric field. Ge Y; Ji J; Zhang Q; Yuan Z; Jian A; Yang X; Xiao G; Zhang W; Sang S Nanotechnology; 2019 Feb; 30(8):085201. PubMed ID: 30523826 [TBL] [Abstract][Full Text] [Related]
7. The effect of defect types on the electronic and optical properties of graphene nanoflakes physisorbed by ionic liquids. Shakourian-Fard M; Kamath G Phys Chem Chem Phys; 2017 Feb; 19(6):4383-4395. PubMed ID: 28119976 [TBL] [Abstract][Full Text] [Related]
8. Strain-induced phase transition and electron spin-polarization in graphene spirals. Zhang X; Zhao M Sci Rep; 2014 Jul; 4():5699. PubMed ID: 25027550 [TBL] [Abstract][Full Text] [Related]
9. Aromaticity of graphene nanoflakes in a new way: fragment analysis by combination of the nucleus-independent chemical shifts and the anisotropy of current induced density. Li Q; Li CM; Xu HL; Su ZM J Mol Model; 2017 Aug; 23(8):231. PubMed ID: 28726151 [TBL] [Abstract][Full Text] [Related]
11. In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold. Leicht P; Zielke L; Bouvron S; Moroni R; Voloshina E; Hammerschmidt L; Dedkov YS; Fonin M ACS Nano; 2014 Apr; 8(4):3735-42. PubMed ID: 24694063 [TBL] [Abstract][Full Text] [Related]
12. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes. Hu W; Lin L; Yang C; Yang J J Chem Phys; 2014 Dec; 141(21):214704. PubMed ID: 25481158 [TBL] [Abstract][Full Text] [Related]
13. Stability, electronic and magnetic properties of embedded triangular graphene nanoflakes. Dai QQ; Zhu YF; Jiang Q Phys Chem Chem Phys; 2012 Jan; 14(3):1253-61. PubMed ID: 22134488 [TBL] [Abstract][Full Text] [Related]
14. Generating pure spin current with spin-dependent Seebeck effect in ferromagnetic zigzag graphene nanoribbons. Zhou Y; Zheng X J Phys Condens Matter; 2019 Aug; 31(31):315301. PubMed ID: 31022711 [TBL] [Abstract][Full Text] [Related]
15. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Li J; Sanz S; Castro-Esteban J; Vilas-Varela M; Friedrich N; Frederiksen T; Peña D; Pascual JI Phys Rev Lett; 2020 May; 124(17):177201. PubMed ID: 32412280 [TBL] [Abstract][Full Text] [Related]