These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 1805235)
1. Differential effects of naloxone on approach and escape responses induced by electrical stimulation of the lateral hypothalamus or the mesencephalic central gray area in mice. Cazala P; David V Pharmacol Biochem Behav; 1991 Oct; 40(2):323-7. PubMed ID: 1805235 [TBL] [Abstract][Full Text] [Related]
2. Electrical self-stimulation of the mesencephalic central gray area: facilitation by lateral hypothalamic stimulation. Cazala P Physiol Behav; 1984 May; 32(5):771-7. PubMed ID: 6494281 [TBL] [Abstract][Full Text] [Related]
3. Approach and escape responses to mesencephalic central gray stimulation in rats: effects of morphine and naloxone. Ichitani Y; Iwasaki T Behav Brain Res; 1986 Oct; 22(1):63-73. PubMed ID: 3024661 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of intracerebral microinjection of morphine on approach and escape responses induced by lateral hypothalamic stimulation in the mouse. Bendani T; Cazala P Pharmacol Biochem Behav; 1988 Jun; 30(2):397-401. PubMed ID: 3174771 [TBL] [Abstract][Full Text] [Related]
5. Dose-dependent effects of morphine differentiate self-administration elicited from lateral hypothalamus and mesencephalic central gray area in mice. Cazala P Brain Res; 1990 Sep; 527(2):280-5. PubMed ID: 2253035 [TBL] [Abstract][Full Text] [Related]
6. Effects of apomorphine, clonidine or 5-methoxy-NN-dimethyltryptamine on approach and escape components of lateral hypothalamic and mesencephalic central gray stimulation in two inbred strains of mice. Cazala P; Garrigues AM Pharmacol Biochem Behav; 1983 Jan; 18(1):87-93. PubMed ID: 6338533 [TBL] [Abstract][Full Text] [Related]
7. Dorso-ventral variation in the attenuating effect of lateral hypothalamic stimulation on the switch-off response elicited from the mesencephalic central gray area. Cazala P; Schmitt P Physiol Behav; 1987; 40(5):625-9. PubMed ID: 3671528 [TBL] [Abstract][Full Text] [Related]
8. Approach responses for mesencephalic central gray stimulation are facilitated by D-amphetamine or food deprivation. Cazala P Neurosci Lett; 1982 Nov; 33(2):203-8. PubMed ID: 7155462 [TBL] [Abstract][Full Text] [Related]
9. Effects of dorsal raphe stimulation on escape induced by medial hypothalamic or central gray stimulation. Schmitt P; Sandner G; Colpaert FC; De Witte P Behav Brain Res; 1983 Jun; 8(3):289-307. PubMed ID: 6871015 [TBL] [Abstract][Full Text] [Related]
10. A Y-maze test reveals the positively reinforcing properties of electrical stimulation of the mesencephalic central gray area. Cazala P; Zielinski A Brain Res; 1983 Aug; 273(1):143-6. PubMed ID: 6616219 [TBL] [Abstract][Full Text] [Related]
11. Self-stimulation behavior can be elicited from various 'aversive' brain structures. Cazala P Behav Brain Res; 1986 Nov; 22(2):163-71. PubMed ID: 3790241 [TBL] [Abstract][Full Text] [Related]
12. Self-stimulation of an 'aversive' brain structure: the mesencephalic central gray area. Cazala P; Bendani T; Zielinski A Brain Res; 1985 Feb; 327(1-2):53-60. PubMed ID: 3986519 [TBL] [Abstract][Full Text] [Related]
13. Effects of hypothalamic lesions on central gray stimulation induced escape behavior and on withdrawal reactions in the rat. Sandner G; Schmitt P; Karli P Physiol Behav; 1985 Feb; 34(2):291-7. PubMed ID: 4001189 [TBL] [Abstract][Full Text] [Related]
14. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus. Osaki MY; Castellan-Baldan L; Calvo F; Carvalho AD; Felippotti TT; de Oliveira R; Ubiali WA; Paschoalin-Maurin T; Elias-Filho DH; Motta V; da Silva LA; Coimbra NC Brain Res; 2003 Dec; 992(2):179-92. PubMed ID: 14625057 [TBL] [Abstract][Full Text] [Related]
15. Morphine applied to the mesencephalic central gray suppresses brain stimulation induced escape. Jenck F; Schmitt P; Karli P Pharmacol Biochem Behav; 1983 Aug; 19(2):301-8. PubMed ID: 6634879 [TBL] [Abstract][Full Text] [Related]
16. Interactions between aversive and rewarding effects of hypothalamic stimulations. Schmitt P; Karli P Physiol Behav; 1984 Apr; 32(4):617-27. PubMed ID: 6484013 [TBL] [Abstract][Full Text] [Related]
17. Differential effects of morphine on operant escape behavior and averse symptom induced by dorsal central gray stimulation in rats. Moriyama M; Gomita Y; Ichimaru Y; Araki Y Jpn J Pharmacol; 1991 Jan; 55(1):169-73. PubMed ID: 2041223 [TBL] [Abstract][Full Text] [Related]
18. Differentiation of intracranial morphine self-administration behavior among five brain regions in mice. David V; Cazala P Pharmacol Biochem Behav; 1994 Jul; 48(3):625-33. PubMed ID: 7938115 [TBL] [Abstract][Full Text] [Related]
19. Effects of the blockade of opioid receptor on defensive reactions elicited by electrical stimulation within the deep layers of the superior colliculus and DPAG. Coimbra NC; Eichenberger GC; Gorchinski RT; Maisonnette S Brain Res; 1996 Oct; 736(1-2):348-52. PubMed ID: 8930342 [TBL] [Abstract][Full Text] [Related]
20. Flight induced by infusion of bicuculline methiodide into periventricular structures. Di Scala G; Schmitt P; Karli P Brain Res; 1984 Sep; 309(2):199-208. PubMed ID: 6478218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]