BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 180527)

  • 41. A defect in sodium-dependent amino acid uptake in diabetic rabbit peripheral nerve. Correction by an aldose reductase inhibitor or myo-inositol administration.
    Greene DA; Lattimer SA; Carroll PB; Fernstrom JD; Finegold DN
    J Clin Invest; 1990 May; 85(5):1657-65. PubMed ID: 2185278
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dissociation of cell density and cell cycle effects on the rate of transport of alpha-aminoisobutyric acid in 3T3 cells.
    Moya F; Glaser L
    J Biol Chem; 1980 Apr; 255(8):3258-60. PubMed ID: 7364743
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The relationship between cell surface protein and glucose and alpha-aminoisobutyrate transport in transformed chick and mouse cells.
    Yamada KM; Pastan I
    J Cell Physiol; 1976 Dec; 89(4):827-9. PubMed ID: 188852
    [No Abstract]   [Full Text] [Related]  

  • 44. Characteristics of a neutral amino acid transport system (system A) in osteoblastic rat osteosarcoma cells.
    Baum BJ; Shteyer A
    Exp Cell Res; 1987 Apr; 169(2):453-7. PubMed ID: 3470191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The gamma-aminobutyric acid transporter and its interaction with taurine in the apical membrane of the bovine retinal pigment epithelium.
    Sivakami S; Ganapathy V; Leibach FH; Miyamoto Y
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):391-7. PubMed ID: 1575683
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of sodium-dependent amino acid transport activity during liver regeneration.
    Fowler FC; Banks RK; Mailliard ME
    Hepatology; 1992 Nov; 16(5):1187-94. PubMed ID: 1427657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amino acid transport and rubidium-ion uptake in monolayer cultures of hepatocytes from neonatal rats.
    Bellemann P
    Biochem J; 1981 Sep; 198(3):475-83. PubMed ID: 6275850
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Group translocation of the ribose moiety of inosine by vesicles of plasma membrane from T(3 cells transformed by Simian virus 40.
    Quinlan DC; Hochstadt J
    J Biol Chem; 1976 Jan; 251(2):344-54. PubMed ID: 173717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alpha-aminoisobutyric acid transport into human glia and glioma cells in culture.
    Ronquist G; Agren G; Ponten J; Westermark B
    J Cell Physiol; 1976 Nov; 89(3):433-9. PubMed ID: 977662
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An altered rate of uridine transport in membrane vesicles isolated from growing and quiescent mouse 3T3 fibroblast cells.
    Quinlan DC; Hochstadt J
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5000-3. PubMed ID: 4531032
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Na + -dependent amino acid transport in isolated membrane vesicles of a marine pseudomonad energized by electron donors.
    Sprott GD; MacLeod RA
    Biochem Biophys Res Commun; 1972 May; 47(4):838-45. PubMed ID: 4337324
    [No Abstract]   [Full Text] [Related]  

  • 52. Amino acid and hexose transport of normal and simian virus 40-transformed human cells.
    Patterson MK; Birckbichler PJ; Conway E; Orr GR
    Cancer Res; 1976 Feb; 36(2 Pt 1):394-7. PubMed ID: 177198
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex.
    Williams TC; Doherty AJ; Griffith DA; Jarvis SM
    Biochem J; 1989 Nov; 264(1):223-31. PubMed ID: 2604712
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulfhydryl group involvement in the modulation of neutral amino acid transport in thymocyte membrane vesicles.
    Kwock L
    J Cell Physiol; 1981 Feb; 106(2):279-82. PubMed ID: 7012159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of glucose uptake in animal cells. Studies using plasma membrane vesicles isolated from nontransformed and simian virus 40-transformed mouse fibroblast cultures.
    Lever JE
    J Biol Chem; 1979 Apr; 254(8):2961-7. PubMed ID: 218958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Catabolic control of the enhanced alanine-preferring system for amino acid transport in glucose-starved hamster cells requires protein synthesis.
    Christopher CW; Nishino H; Schiller RM; Isselbacher KJ; Kalckar HM
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1878-81. PubMed ID: 287028
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increased uptake of amino acids and 2-deoxy-D-glucose by virus-transformed cells in culture.
    Isselbacher KJ
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):585-9. PubMed ID: 4335068
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and transport applications of 3-aminobicyclo[3.2.1] octane-3-carboxylic acids.
    Christensen HN; Handlogten ME; Vadgama JV; de la Cuesta E; Ballesteros P; Trigo GG; AvendaƱo C
    J Med Chem; 1983 Oct; 26(10):1374-8. PubMed ID: 6413692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The sites for alpha-aminoisobutyric acid uptake in normal mammary gland and ascites tumor cells. A comparative study of mouse tissues in vitro.
    Neville MC; Lobitz CJ; Ripoll EA; Tinney C
    J Biol Chem; 1980 Aug; 255(15):7311-6. PubMed ID: 7391084
    [No Abstract]   [Full Text] [Related]  

  • 60. Placental amino acid uptake. IV. Transport microvillous membrane vesicles.
    Ruzycki SM; Kelley LK; Smith CH
    Am J Physiol; 1978 Jan; 234(1):C27-35. PubMed ID: 623238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.