BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18052913)

  • 1. T-BAPS: a Bayesian statistical tool for comparison of microbial communities using terminal-restriction fragment length polymorphism (T-RFLP) data.
    Tang J; Tao J; Urakawa H; Corander J
    Stat Appl Genet Mol Biol; 2007; 6():Article30. PubMed ID: 18052913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities.
    Schütte UM; Abdo Z; Bent SJ; Shyu C; Williams CJ; Pierson JD; Forney LJ
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):365-80. PubMed ID: 18648804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches.
    Hartmann M; Frey B; Kölliker R; Widmer F
    J Microbiol Methods; 2005 Jun; 61(3):349-60. PubMed ID: 15767011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of mucosa-associated bacterial communities of the mouse intestine by terminal restriction fragment length polymorphism: Utility of sampling strategies and methods to reduce single-stranded DNA artifacts.
    Costa E; Puhl NJ; Selinger LB; Inglis GD
    J Microbiol Methods; 2009 Aug; 78(2):175-80. PubMed ID: 19463863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian identification of admixture events using multilocus molecular markers.
    Corander J; Marttinen P
    Mol Ecol; 2006 Sep; 15(10):2833-43. PubMed ID: 16911204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of T-RFLP data using analysis of variance and ordination methods: a comparative study.
    Culman SW; Gauch HG; Blackwood CB; Thies JE
    J Microbiol Methods; 2008 Sep; 75(1):55-63. PubMed ID: 18584903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved accuracy in terminal restriction fragment length polymorphism phylogenetic analysis using a novel internal size standard definition.
    Takeshita T; Nakano Y; Yamashita Y
    Oral Microbiol Immunol; 2007 Dec; 22(6):419-28. PubMed ID: 17949346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods.
    Lele SR; Dennis B; Lutscher F
    Ecol Lett; 2007 Jul; 10(7):551-63. PubMed ID: 17542934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes.
    Abdo Z; Schüette UM; Bent SJ; Williams CJ; Forney LJ; Joyce P
    Environ Microbiol; 2006 May; 8(5):929-38. PubMed ID: 16623749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian variable and model selection methods for genetic association studies.
    Fridley BL
    Genet Epidemiol; 2009 Jan; 33(1):27-37. PubMed ID: 18618760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles.
    Smith CJ; Danilowicz BS; Clear AK; Costello FJ; Wilson B; Meijer WG
    FEMS Microbiol Ecol; 2005 Nov; 54(3):375-80. PubMed ID: 16332335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the convergence of Markov Chain Monte Carlo methods: an example from evaluation of diagnostic tests in absence of a gold standard.
    Toft N; Innocent GT; Gettinby G; Reid SW
    Prev Vet Med; 2007 May; 79(2-4):244-56. PubMed ID: 17292499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian mixture model for partitioning gene expression data.
    Zhou C; Wakefield J
    Biometrics; 2006 Jun; 62(2):515-25. PubMed ID: 16918916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics.
    Kitts CL
    Curr Issues Intest Microbiol; 2001 Mar; 2(1):17-25. PubMed ID: 11709853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling.
    Hartmann M; Widmer F
    FEMS Microbiol Ecol; 2008 Feb; 63(2):249-60. PubMed ID: 18177353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BAPS 2: enhanced possibilities for the analysis of genetic population structure.
    Corander J; Waldmann P; Marttinen P; Sillanpää MJ
    Bioinformatics; 2004 Oct; 20(15):2363-9. PubMed ID: 15073024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils.
    Edel-Hermann V; Dreumont C; Pérez-Piqueres A; Steinberg C
    FEMS Microbiol Ecol; 2004 Mar; 47(3):397-404. PubMed ID: 19712328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of biases associated with profiling simple, model communities using terminal-restriction fragment length polymorphism-based analyses.
    Frey JC; Angert ER; Pell AN
    J Microbiol Methods; 2006 Oct; 67(1):9-19. PubMed ID: 16563536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and application of a T-RFLP data analysis method using correlation coefficient matrices.
    Nakano Y; Takeshita T; Kamio N; Shiota S; Shibata Y; Yasui M; Yamashita Y
    J Microbiol Methods; 2008 Dec; 75(3):501-5. PubMed ID: 18775752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian approach to DNA sequence segmentation.
    Boys RJ; Henderson DA
    Biometrics; 2004 Sep; 60(3):573-81; discussion 581-8. PubMed ID: 15339274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.