BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 18053064)

  • 1. Presence in Legionella pneumophila of a mammalian-like mitochondrial permeability transition pore?
    Khemiri A; Jouenne T; Cosette P
    FEMS Microbiol Lett; 2008 Jan; 278(2):171-6. PubMed ID: 18053064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The major outer membrane protein of Legionella pneumophila Lpg1974 shows pore-forming characteristics similar to the human mitochondrial outer membrane pore, hVDAC1.
    Younas F; Soltanmohammadi N; Knapp O; Benz R
    Biochim Biophys Acta Biomembr; 2018 Aug; 1860(8):1544-1553. PubMed ID: 29787733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands.
    Glöckner G; Albert-Weissenberger C; Weinmann E; Jacobi S; Schunder E; Steinert M; Hacker J; Heuner K
    Int J Med Microbiol; 2008 Jul; 298(5-6):411-28. PubMed ID: 17888731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages.
    Habyarimana F; Al-Khodor S; Kalia A; Graham JE; Price CT; Garcia MT; Kwaik YA
    Environ Microbiol; 2008 Jun; 10(6):1460-74. PubMed ID: 18279343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origins of eukaryotic-like proteins in Legionella pneumophila.
    Lurie-Weinberger MN; Gomez-Valero L; Merault N; Glöckner G; Buchrieser C; Gophna U
    Int J Med Microbiol; 2010 Nov; 300(7):470-81. PubMed ID: 20537944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity.
    Cazalet C; Rusniok C; Brüggemann H; Zidane N; Magnier A; Ma L; Tichit M; Jarraud S; Bouchier C; Vandenesch F; Kunst F; Etienne J; Glaser P; Buchrieser C
    Nat Genet; 2004 Nov; 36(11):1165-73. PubMed ID: 15467720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The type II signal peptidase of Legionella pneumophila.
    Geukens N; De Buck E; Meyen E; Maes L; Vranckx L; Van Mellaert L; Anné J; Lammertyn E
    Res Microbiol; 2006 Nov; 157(9):836-41. PubMed ID: 17005379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation.
    De Buck E; Maes L; Meyen E; Van Mellaert L; Geukens N; Anné J; Lammertyn E
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1413-20. PubMed ID: 15883032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and modelling of a PPM protein phosphatase fold in the Legionella pneumophila deAMPylase SidD.
    Rigden DJ
    FEBS Lett; 2011 Sep; 585(17):2749-54. PubMed ID: 21843523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial permeability transition pore.
    Bernardi P; Forte M
    Novartis Found Symp; 2007; 287():157-64; discussion 164-9. PubMed ID: 18074637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Legionella pneumophila: population genetics, phylogeny and genomics.
    Gomez-Valero L; Rusniok C; Buchrieser C
    Infect Genet Evol; 2009 Sep; 9(5):727-39. PubMed ID: 19450709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bacterial ecto-triphosphate diphosphohydrolase similar to human CD39 is essential for intracellular multiplication of Legionella pneumophila.
    Sansom FM; Newton HJ; Crikis S; Cianciotto NP; Cowan PJ; d'Apice AJ; Hartland EL
    Cell Microbiol; 2007 Aug; 9(8):1922-35. PubMed ID: 17388784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Legionella pneumophila Dps homolog is regulated by iron and involved in multiple stress tolerance.
    Yu MJ; Ren J; Zeng YL; Zhou SN; Lu YJ
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S79-86. PubMed ID: 19455515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors.
    Rasis M; Segal G
    Mol Microbiol; 2009 May; 72(4):995-1010. PubMed ID: 19400807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron acquisition by Legionella pneumophila.
    Cianciotto NP
    Biometals; 2007 Jun; 20(3-4):323-31. PubMed ID: 17180462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria.
    Degtyar E; Zusman T; Ehrlich M; Segal G
    Cell Microbiol; 2009 Aug; 11(8):1219-35. PubMed ID: 19438520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system.
    Feldman M; Zusman T; Hagag S; Segal G
    Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12206-11. PubMed ID: 16091472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The twin-arginine translocation pathway is necessary for correct membrane insertion of the Rieske Fe/S protein in Legionella pneumophila.
    De Buck E; Vranckx L; Meyen E; Maes L; Vandersmissen L; Anné J; Lammertyn E
    FEBS Lett; 2007 Jan; 581(2):259-64. PubMed ID: 17188684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of the cMyc epitope tag can be problematic for protein detection in Legionella pneumophila.
    De Buck E; Lebeau I; Van Mellaert L; Geukens N; Anné J; Lammertyn E
    J Microbiol Methods; 2004 Oct; 59(1):131-4. PubMed ID: 15325760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila.
    Chen J; Reyes M; Clarke M; Shuman HA
    Cell Microbiol; 2007 Jul; 9(7):1660-71. PubMed ID: 17371403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.