BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1805308)

  • 1. Differences in codon usage among genes encoding proteins of different function in Rhodobacter capsulatus.
    Wu LF; Saier MH
    Res Microbiol; 1991; 142(9):943-9. PubMed ID: 1805308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overlap between operons involved in carotenoid and bacteriochlorophyll biosynthesis in Rhodobacter capsulatus.
    Young DA; Rudzik MB; Marrs BL
    FEMS Microbiol Lett; 1992 Aug; 74(2-3):213-8. PubMed ID: 1526454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of the photosynthesis gene cluster in Rhodospirillum centenum.
    Yildiz FH; Gest H; Bauer CE
    Mol Microbiol; 1992 Sep; 6(18):2683-91. PubMed ID: 1447976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus.
    Ponnampalam SN; Buggy JJ; Bauer CE
    J Bacteriol; 1995 Jun; 177(11):2990-7. PubMed ID: 7768793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of photosystem genes in Rhodobacter capsulatus.
    Bauer C; Buggy J; Mosley C
    Trends Genet; 1993 Feb; 9(2):56-60. PubMed ID: 8456503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide sequence and transcriptional analysis of the flanking region of the gene (spb) for the trans-acting factor that controls light-mediated expression of the puf operon in Rhodobacter sphaeroides.
    Mizoguchi H; Masuda T; Nishimura K; Shimada H; Ohta H; Shioi Y; Takamiya K
    Plant Cell Physiol; 1997 May; 38(5):558-67. PubMed ID: 9210332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of nitrogenase in the photosynthetic bacterium Rhodobacter sphaeroides containing draTG and nifHDK genes from Rhodobacter capsulatus.
    Yakunin AF; Fedorov AS; Laurinavichene TV; Glaser VM; Egorov NS; Tsygankov AA; Zinchenko VV; Hallenbeck PC
    Can J Microbiol; 2001 Mar; 47(3):206-12. PubMed ID: 11315111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequence of the methoxyneurosporene dehydrogenase gene from Rhodobacter sphaeroides: comparison with other bacterial carotenoid dehydrogenases.
    Garí E; Toledo JC; Gibert I; Barbé J
    FEMS Microbiol Lett; 1992 May; 72(1):103-8. PubMed ID: 1612412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes.
    Klug G
    Mol Microbiol; 1993 Jul; 9(1):1-7. PubMed ID: 7692215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tackling codon usage bias for heterologous expression in Rhodobacter sphaeroides by supplementation of rare tRNAs.
    Cheng D; Wang R; Prather KJ; Chow KL; Hsing IM
    Enzyme Microb Technol; 2015 May; 72():25-34. PubMed ID: 25837504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel membrane-associated c-type cytochrome, cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides.
    Jenney FE; Daldal F
    EMBO J; 1993 Apr; 12(4):1283-92. PubMed ID: 8385603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis and purification of enzymes for carotenoid biosynthesis expressed in photosynthetic bacteria.
    Bartley GE; Kumle A; Beyer P; Scolnik PA
    Methods Enzymol; 1993; 214():374-85. PubMed ID: 8469149
    [No Abstract]   [Full Text] [Related]  

  • 13. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1.
    O'Gara JP; Kaplan S
    J Bacteriol; 1997 Mar; 179(6):1951-61. PubMed ID: 9068641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence, genetic, and lacZ fusion analyses of a nifR3-ntrB-ntrC operon in Rhodobacter capsulatus.
    Foster-Hartnett D; Cullen PJ; Gabbert KK; Kranz RG
    Mol Microbiol; 1993 May; 8(5):903-14. PubMed ID: 8355615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides.
    Lang HP; Cogdell RJ; Gardiner AT; Hunter CN
    J Bacteriol; 1994 Jul; 176(13):3859-69. PubMed ID: 8021167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-reciprocal regulation of Rhodobacter capsulatus and Rhodobacter sphaeroides recA genes expression.
    Fernandez de Henestrosa AR; Rivera E; Barbé J
    FEMS Microbiol Lett; 1995 Jun; 129(2-3):175-81. PubMed ID: 7607398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides.
    Lang HP; Cogdell RJ; Takaichi S; Hunter CN
    J Bacteriol; 1995 Apr; 177(8):2064-73. PubMed ID: 7721699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the FnrL regulon in Rhodobacter capsulatus reveals limited regulon overlap with orthologues from Rhodobacter sphaeroides and Escherichia coli.
    Kumka JE; Bauer CE
    BMC Genomics; 2015 Nov; 16():895. PubMed ID: 26537891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and nucleotide sequence of regA, a putative response regulator gene of Rhodobacter sphaeroides.
    Phillips-Jones MK; Hunter CN
    FEMS Microbiol Lett; 1994 Mar; 116(3):269-75. PubMed ID: 8181698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus.
    Armstrong GA; Alberti M; Leach F; Hearst JE
    Mol Gen Genet; 1989 Apr; 216(2-3):254-68. PubMed ID: 2747617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.