These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Peptide retention time prediction for peptides with post-translational modifications: N-terminal (α-amine) and lysine (ε-amine) acetylation. Mizero B; Yeung D; Spicer V; Krokhin OV J Chromatogr A; 2021 Nov; 1657():462584. PubMed ID: 34619563 [TBL] [Abstract][Full Text] [Related]
25. Information-dependent LC-MS/MS acquisition with exclusion lists potentially generated on-the-fly: case study using a whole cell digest of Clostridium thermocellum. McQueen P; Spicer V; Rydzak T; Sparling R; Levin D; Wilkins JA; Krokhin O Proteomics; 2012 Apr; 12(8):1160-9. PubMed ID: 22577018 [TBL] [Abstract][Full Text] [Related]
26. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling. Chen W; Adhikari S; Chen L; Lin L; Li H; Luo S; Yang P; Tian R J Chromatogr A; 2017 May; 1498():207-214. PubMed ID: 28126229 [TBL] [Abstract][Full Text] [Related]
27. A robust linear regression based algorithm for automated evaluation of peptide identifications from shotgun proteomics by use of reversed-phase liquid chromatography retention time. Xu H; Yang L; Freitas MA BMC Bioinformatics; 2008 Aug; 9():347. PubMed ID: 18713471 [TBL] [Abstract][Full Text] [Related]
29. Enhanced peptide quantification using spectral count clustering and cluster abundance. Lee S; Kwon MS; Lee HJ; Paik YK; Tang H; Lee JK; Park T BMC Bioinformatics; 2011 Oct; 12():423. PubMed ID: 22034872 [TBL] [Abstract][Full Text] [Related]
30. Increasing protein identifications in bottom-up proteomics of T. castaneum - Exploiting synergies of protein biochemistry and bioinformatics. Rudolf-Scholik J; Lilek D; Maier M; Reischenböck T; Maisl C; Allram J; Herbinger B; Rechthaler J J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Jun; 1240():124128. PubMed ID: 38759531 [TBL] [Abstract][Full Text] [Related]
31. pValid 2: A deep learning based validation method for peptide identification in shotgun proteomics with increased discriminating power. Zhou WJ; Wei ZH; He SM; Chi H J Proteomics; 2022 Jan; 251():104414. PubMed ID: 34737111 [TBL] [Abstract][Full Text] [Related]
32. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry. Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533 [TBL] [Abstract][Full Text] [Related]
33. [Prediction of peptide retention time in reversed-phase liquid chromatography and its application in protein identification]. Liu C; Wang H; Fu Y; Yuan Z; Chi H; Wang L; Sun R; He S Se Pu; 2010 Jun; 28(6):529-34. PubMed ID: 20873570 [TBL] [Abstract][Full Text] [Related]
34. [A new peptide retention time prediction method for mass spectrometry based proteomic analysis by a serial and parallel support vector machine model]. Zhang J; Zhang D; Zhang W; Xie H Se Pu; 2012 Sep; 30(9):857-63. PubMed ID: 23285964 [TBL] [Abstract][Full Text] [Related]
35. Deep learning for peptide identification from metaproteomics datasets. Feng S; Sterzenbach R; Guo X J Proteomics; 2021 Sep; 247():104316. PubMed ID: 34246788 [TBL] [Abstract][Full Text] [Related]
36. Identification of differentially expressed peptides in high-throughput proteomics data. van Ooijen MP; Jong VL; Eijkemans MJC; Heck AJR; Andeweg AC; Binai NA; van den Ham HJ Brief Bioinform; 2018 Sep; 19(5):971-981. PubMed ID: 28369175 [TBL] [Abstract][Full Text] [Related]
37. Optimal precursor ion selection for LC-MALDI MS/MS. Zerck A; Nordhoff E; Lehrach H; Reinert K BMC Bioinformatics; 2013 Feb; 14():56. PubMed ID: 23418672 [TBL] [Abstract][Full Text] [Related]
38. Application of Displacement Chromatography to Online Two-Dimensional Liquid Chromatography Coupled to Tandem Mass Spectrometry Improves Peptide Separation Efficiency and Detectability for the Analysis of Complex Proteomes. Kwiatkowski M; Krösser D; Wurlitzer M; Steffen P; Barcaru A; Krisp C; Horvatovich P; Bischoff R; Schlüter H Anal Chem; 2018 Aug; 90(16):9951-9958. PubMed ID: 30014690 [TBL] [Abstract][Full Text] [Related]
39. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Dwivedi RC; Spicer V; Harder M; Antonovici M; Ens W; Standing KG; Wilkins JA; Krokhin OV Anal Chem; 2008 Sep; 80(18):7036-42. PubMed ID: 18686972 [TBL] [Abstract][Full Text] [Related]
40. Improving peptide identification using an empirical peptide retention time database. Sun W; Zhang L; Yang R; Shao C; Zhang Z; Gao Y Rapid Commun Mass Spectrom; 2009 Jan; 23(1):109-18. PubMed ID: 19065623 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]